ZHANG Yulin, CHEN Hongfan, ZHAO Zhiping, et al. Analysis of Volatile Flavor Compounds in Novel Industrial Produced Low-temperature Pickled Mustard Roots[J]. Science and Technology of Food Industry, 2021, 42(22): 268−275. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020184.
Citation: ZHANG Yulin, CHEN Hongfan, ZHAO Zhiping, et al. Analysis of Volatile Flavor Compounds in Novel Industrial Produced Low-temperature Pickled Mustard Roots[J]. Science and Technology of Food Industry, 2021, 42(22): 268−275. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020184.

Analysis of Volatile Flavor Compounds in Novel Industrial Produced Low-temperature Pickled Mustard Roots

More Information
  • Received Date: February 23, 2021
  • Available Online: September 07, 2021
  • In order to study the effect of temperature on the volatile flavor compounds of low-temperature pickled mustard roots, industrially produced −1~5 ℃ and 6~8 ℃ low-temperature pickled mustard roots were employed as materials in the present study. Volatile flavor solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS), combined with relative odor activity value(ROAV) and principal component analysis(PCA). The results showed that the low-temperature pickled mustard roots volatile flavor compounds were mainly composed of alcohols, esters, alkenes and nitriles. By calculating ROAV value, 12 kinds of flavor substances with ROAV≥1 were obtained. Sec-butyl isothiocyanate, D-limonene, eucalyptol, linalool, phenethyl alcohol, 2-phenylethyl isothiocyanate, anethole, phenylpropionitrile were the more important flavor substances in −1~5 ℃ low-temperature pickled mustard roots. However, D-limonene, eucalyptol, phenethyl alcohol, linalool, phenylacetaldehyde, phenylpropionitrile, nonanoic acid, anethole, 2-phenylethyl isothiocyanate, 1-octene-3 alcohol contributed greater to the flavor of 6~8 ℃ low-temperature pickled mustard roots. PCA analysis of the 12 flavor substances indicated that phenethyl alcohol, eucalyptol, 1-octene-3 alcohol, 2-phenylethyl isothiocyanate, and phenylpropionitrile were characteristic flavor substances. The present study would supply the theoretical supports for optimization of procedures for industrial production of low-temperature pickled mustard roots.
  • [1]
    尹爽, 王修俊, 刘佳慧, 等. 复合保脆剂对腌制大头菜脆度的影响研究[J]. 食品科技,2016,41(7):266−270. [YIN S, WANG X J, LIU J H, et al. Effect of composite brittle-preserving agent on brittleness of salted turnip[J]. Food Science and Technology,2016,41(7):266−270.
    [2]
    朱莉莉, 罗惠波, 黄治国, 等. 大头菜等蔬菜腌制工艺研究现状与展望[J]. 中国酿造,2018,37(7):11−16. [ZHU L L, LUO H B, HUANG Z G, et al. Research status and prospect of pickling technology of kohlrabi and other vegetables[J]. China Brewing,2018,37(7):11−16. doi: 10.11882/j.issn.0254-5071.2018.07.003
    [3]
    MACLEOD G, MACLEOD A J. The glucosinolates and aroma volatiles of green kohlrabi[J]. Pergamon,1990,29(4):1183−1187.
    [4]
    洪冰, 曾许珍, 蒋和体. 接种发酵和自然发酵大头菜挥发性成分比较[J]. 食品工业科技,2015,36(14):75−80. [HONG B, ZENG X Z, JIANG H T. Comparison of volatile components of kohlrabi by inoculation fermentation and natural fermentation[J]. Science and Technology of Food Industry,2015,36(14):75−80.
    [5]
    郭壮, 蔡宏宇, 汤尚文, 等. 基于电子舌技术3个地区产腌制大头菜滋味品质评价[J]. 食品工业科技,2016,37(8):65−68. [GUO Z, CAI H Y, TANG S W, et al. Taste and quality evaluation of pickled kohlrabi in three regions based on electronic tongue technology[J]. Science and Technology of Food Industry,2016,37(8):65−68.
    [6]
    PARR H, BOLAT I, COOK D. Modelling flavour formation in roasted malt substrates under controlled conditions of time and temperature[J]. Food Chemistry,2021,337:127641. doi: 10.1016/j.foodchem.2020.127641
    [7]
    DEED R C, FEDRIZZI B, GARDNER R C. Influence of fermentation temperature, yeast strain, and grape juice on the aroma chemistry and sensory profile of Sauvignon Blanc wines[J]. Journal of Agricultural and Food Chemistry,2017,65(40):8902−8912. doi: 10.1021/acs.jafc.7b03229
    [8]
    洪冰. 大头菜发酵工艺及其品质变化研究[D]. 重庆: 西南大学, 2016.

    HONG B. Study on fermentation technology and quality of turnip [D]. Chongqing: Southwest University, 2016.
    [9]
    苏扬, 陈云川. 泡菜的风味化学及呈味机理的探讨[J]. 中国调味品,2001(4):26−29. [SU Y, CHEN Y C. Discussion on the flavor chemistry and taste mechanism of pickle[J]. China Condiments,2001(4):26−29. doi: 10.3969/j.issn.1000-9973.2001.04.008
    [10]
    张奶英, 刘书亮, 罗松明, 等. 叶用芥菜盐渍过程中微生物群落分析[J]. 食品工业科技,2014,35(13):147−151,156. [ZHANG N Y, LIU S L, LUO S M, et al. Study on microbial community of salted leaf mustard(Brassica juncea) during their saline fermentation process[J]. Science and Technology of Food Industry,2014,35(13):147−151,156.
    [11]
    韦璐, 杨昌鹏, 孙钦菊, 等. 香蕉果酒低温发酵过程中挥发性香气成分的变化[J]. 食品工业科技,2020,41(18):231−238. [WEI L, YANG C P, SUN Q J, et al. Changes of volatile aroma components in banana fruit wine during low temperature fermentation[J]. Science and Technology of Food Industry,2020,41(18):231−238.
    [12]
    李小艳. 低温乳酸菌的筛选鉴定及其发酵泡白菜的应用研究[D]. 成都: 四川农业大学, 2014.

    LI X Y. Study on screening and identification of lactic acid bacteria and its application in fermentation of chinese cabbages [D]. Chengdu: Sichuan Agricultural University, 2014.
    [13]
    欧阳晶, 杨俊换, 苏悟, 等. 腊八豆低温后发酵过程中的挥发性成分变化研究[J]. 食品工业科技,2014,35(17):275−279. [OU Y J, YANG J H, SU W, et al. Study on the changes of volatile components in laba bean fermented at low temperature[J]. Science and Technology of Food Industry,2014,35(17):275−279.
    [14]
    邓山鸿. 低温发酵对脐橙果酒风味物质的影响[D]. 南昌: 南昌大学, 2020.

    DENG S H. Effects of low temperature fermentation on flavor of navel orange wine[D]. Nanchang: Nanchang University, 2020.
    [15]
    杨仁琴. 低温发酵搅拌型酸乳发酵条件研究[D]. 扬州: 扬州大学, 2018.

    YANG R Q. Study on the fermentation conditions of yoghurt by low temperature fermentation[D]. Yangzhou: Yangzhou University, 2018.
    [16]
    张旭, 王卫, 白婷, 等. 四川浅发酵香肠加工进程中挥发性风味物质测定及其主成分分析[J]. 现代食品科技,2020,36(10):274−283. [ZHANG X, WANG W, BAI T, et al. Determination of volatile flavor compounds and principal component analysis in Sichuan sausage processing process[J]. Modern Food Science and Technology,2020,36(10):274−283.
    [17]
    刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: "ROAV"法[J]. 食品科学,2008(7):370−374. [LIU D Y, ZHOU G H, XU X L. A new method to determine the key flavor compounds of food: ROAV method[J]. Food Science,2008(7):370−374. doi: 10.3321/j.issn:1002-6630.2008.07.082
    [18]
    李燕敏, 张昱, 黄佳, 等. 八种异硫氰酸酯类食用香料的合成与香气特征[J]. 中国食品添加剂,2016(7):119−123. [LI Y M, ZHANG Y, HHUANG J, et al. Synthesis and aroma characteristics of eight isothiocyanates[J]. China Food Additives,2016(7):119−123. doi: 10.3969/j.issn.1006-2513.2016.07.011
    [19]
    肖华志, 牛丽影, 廖小军, 等. 芥末油、青芥辣、冲菜的挥发性风味成分的SPME/GC/MS测定[J]. 中国调味品,2004(6):42−45,17. [XIAO H Z, NIU L Y, LIAO X J, et al. Determination of volatile flavor components in mustard oil, Arabidopsis thaliana[J]. Chinese Seasonings,2004(6):42−45,17. doi: 10.3969/j.issn.1000-9973.2004.06.012
    [20]
    BLAZEVIC I, DULOVIC A, CULIC V C, et al. Microwave-assisted versus conventional isolation of glucosinolate degradation products from Lunaria annua L. and their cytotoxic activity[J]. Biomolecules,2020,10(2):215−225. doi: 10.3390/biom10020215
    [21]
    孙宝国. 食用调香术[M]. 北京: 化学工业出版社, 2003.

    SUN B G. Food flavoring technique[M]. Beijing: Chemical Industry Press, 2003.
    [22]
    王晓华, 赵保翠, 杨兴章, 等. 美拉德反应与食品风味[J]. 肉类研究,2006(5):26−28. [WANG X H, ZHAO B C, YANG X Z, et al. Maillard reaction and food flavor[J]. Meat Research,2006(5):26−28. doi: 10.3969/j.issn.1001-8123.2006.05.011
    [23]
    马艳莉, 刘亚琼, 夏亚男, 等. 青方腐乳关键挥发性风味物质研究[J]. 现代食品科技,2015,31(5):316−321. [MA Y L, LIU Y Q, XIA Y N, et al. Study on key volatile flavor compounds of green square bean curd[J]. Modern Food Science and Technology,2015,31(5):316−321.
    [24]
    朱羽尧, 张国琳, 钱骅, 等. 采收后加工对大红袍花椒中芳香成分和麻味物质含量及组成的影响[J]. 中国调味品,2018,43(10):74−80. [ZHU Y Y, ZHANG G L, QIAN H, et al. Effects of post-harvest processing on the content and composition of aromatic components and numb-taste substances in Zanthoxylum Dahongpao[J]. China Seasoning,2018,43(10):74−80. doi: 10.3969/j.issn.1000-9973.2018.10.015
    [25]
    SEO E J, YEON Y J, SEO J H, et al. Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1, 9-nonanedioic acid[J]. Bioresource Technology,2018,251:288−294. doi: 10.1016/j.biortech.2017.12.036
    [26]
    NIST Chemistry WebBook, SRD 69 [DB/OL]. http://webbook.nist.gov/chemistry/.
    [27]
    谢小本. 腐乳发酵过程挥发性风味成分的变化分析[J]. 现代食品,2018(1):114−116. [XIE X B. Changes of volatile flavor components in fermented bean curd[J]. Modern Food,2018(1):114−116.
    [28]
    樊艳. SPME-GC-MS结合ROAV分析腐乳中的主体风味物质[J]. 食品工业科技,2020,42(8):8. [FAN Y. Analysis of main flavor substances in fermented bean curd by SPME-GC-MS combined with ROAV[J]. Science and Technology of Food Industry,2020,42(8):8.
    [29]
    宋钢. 微生物代谢与香气成分[J]. 中国酿造,2006(2):64−68. [SONG G. Microbial metabolism and aroma components[J]. China Brewing,2006(2):64−68. doi: 10.3969/j.issn.0254-5071.2006.02.020
    [30]
    邓静, 李萍萍. 大头菜腌制过程中挥发性香味物质变化分析[J]. 食品科学,2013,34(24):225−229. [DENG J, LI P P. Changes in volatiles during pickling of root mustard (Brassica juncea Coss. var. megarrhiza Tsen et Lee)[J]. Food Science,2013,34(24):225−229. doi: 10.7506/spkx1002-6630-201324047
    [31]
    ZHAO D, TANG J, DING X. Analysis of volatile components during potherb mustard(Brassica juncea, Coss.) pickle fermentation using SPME-GC-MS[J]. LWT-Food Science and Technology,2005,40(3):439−447.
    [32]
    XUE Y L, HAN H T, LIU C J, et al. Multivariate analyses of the volatile components in fresh and dried turnip(Brassica rapa L.) chips via HS-SPME-GC-MS[J]. J Food Sci Technol-Mysore,2020,57(9):3390−3399. doi: 10.1007/s13197-020-04372-y
    [33]
    TOMITA S, NAKAMURA T, OKADA S. NMR- and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves[J]. Food Chemistry,2018,258(30):25−34.
    [34]
    RASK L, ANDRÉASSON E, EKBOM B, et al. Myrosinase: Gene family evolution and herbivore defense in Brassicaceae[J]. Plant Molecular Biology,2000,42(1):93−114. doi: 10.1023/A:1006380021658
    [35]
    EIB S, GAJEK S R, SCHNEIDER D J, et al. Determination of detection thresholds of sinigrin in water-based matrix and allyl isothiocyanate in water- and oil-based matrices[J]. J Sens Stud,2020,35(4):e12571.
    [36]
    EVA O, MICHAEL G. Thermally induced generation of desirable aroma-active compounds from the glucosinolate Sinigrin[J]. Journal of Agricultural and Food Chemistry,2018,66(10):2485−2490. doi: 10.1021/acs.jafc.7b01039
    [37]
    刘璞, 吴祖芳, 翁佩芳. 榨菜腌制品风味研究进展[J]. 食品研究与开发,2006,27(1):158−161. [LIU P, WU Z F, WENG P F. Research progress on flavor of pickled mustard[J]. Food Research and Development,2006,27(1):158−161. doi: 10.3969/j.issn.1005-6521.2006.01.053
    [38]
    曾朝懿, 张丽珠, 田伟, 等. 川渝地区特色红油火锅底料挥发性风味物质的比较及主成分分析[J]. 食品工业科技,2016,37(7):283−287. [ZENG C Y, ZHANG L Z, TIAN W, et al. Comparison and principal component analysis of volatile flavor compounds in hot pot base in Sichuan and Chongqing region[J]. Science and Technology of Food Industry,2016,37(7):283−287.
    [39]
    HAMILTON E I. Compilation of odour threshold values in air and water: Edited by L. J. van Gemert and A. H. Nettenbreijer, National Institute for Water Supply, Voorburg, The Netherlands, 1977. Price: DFl. 22.00[J]. Elsevier,1978,9(3):300−301.
    [40]
    FU L J, YANG G, LIU L, et al. Analysis of volatile components of Auricularia auricula from different origins by GC-MS combined with electronic nose[J]. J Food Qual,2020,2020(2):1−9.
    [41]
    LU Q, LIU F F, BAO J Q. Volatile components of American silver carp analyzed by electronic nose and MMSE-GC-MS-O[J]. Journal of Food Biochemistry,2019,43(11):e13006.
  • Cited by

    Periodical cited type(6)

    1. 方诗会,熊尧,张召,林俊芳,陈涛,郭丽琼. 副干酪乳杆菌Lp.R3的高密度培养工艺优化. 食品工业科技. 2025(09): 196-205 . 本站查看
    2. 郑超,侯信哲,陈天花,刘彩丽,朱宗河,徐雅芫,周可金,张付贵. 乳酸菌在蔬菜发酵中的作用机制研究进展. 中国调味品. 2024(08): 205-210 .
    3. 王超凡,王慧慧,胡世伟,赵华,张朝正. 鼠李糖乳杆菌TCCC 10035的培养条件优化. 饲料研究. 2024(22): 116-122 .
    4. 蒋大成,郝沛研,程文,李潘贤,方曙光. 发酵食品中乳酸菌的作用探讨. 食品安全导刊. 2023(07): 99-101 .
    5. 谢佳琪,赵洁. 发酵乳中乳酸菌菌株间互作机制及其对产品特性影响的研究进展. 食品工业科技. 2023(17): 1-7 . 本站查看
    6. 刘福东,桑跃,葛绍阳. 乳双歧杆菌BL-99高密度发酵培养工艺的优化研究. 中国奶牛. 2023(12): 32-36 .

    Other cited types(22)

Catalog

    Article Metrics

    Article views (249) PDF downloads (28) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return