LIU Linan, WU Chunmin, GAO Zhuo, et al. Determination of 30 Trace Elements in Rice Based on ICP-MS/MS[J]. Science and Technology of Food Industry, 2021, 42(23): 259−265. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020148.
Citation: LIU Linan, WU Chunmin, GAO Zhuo, et al. Determination of 30 Trace Elements in Rice Based on ICP-MS/MS[J]. Science and Technology of Food Industry, 2021, 42(23): 259−265. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020148.

Determination of 30 Trace Elements in Rice Based on ICP-MS/MS

More Information
  • Received Date: February 21, 2021
  • Available Online: October 10, 2021
  • In 5 kinds of rice samples, the method for determining 30 common trace elements in rice was established. The rice sample was digested by microwave and then injected for analysis by inductively coupled plasma tandem mass spectrometry(ICP-MS/MS) technology. In MS/MS mode, H2, O2, and NH3 were used as the reagent gas to cause the interference or analytes to undergo a mass transfer reaction with the reagent gas, using in-situ mass method or mass transfer method to eliminate mass spectrum interference. The results showed that the linear relationship of the test elements was good, and the linear correlation coefficient was more than 0.9991. The limits of detection were in the range of 0.000251~2.322 mg/kg. Recoveries of the method were in range of 95.50%~104.35%, and the relative standard deviations RSD was less than 4.03%. The established method was used to determine the rice from different regions in China. The results showed that the content of P, S, K, and Mg in the five kinds of rice was higher,between 53.7~736 mg/kg, while the content of heavy metal elements Cr, As, Cd, and Pb was very low. This method has the characteristics of simple sample preparation, high sensitivity and low detection limit, and can accurately monitor the trace elements in rice.
  • [1]
    王力波, 田忠静, 王金辉. 我国稻谷的种植及消费情况概况[J]. 中国农业信息,2013(11):201. [WANG L B, TIAN Z J, WANG J H, et al. General situation of rice planting and consumption in China[J]. China Agricultural Informatics,2013(11):201.
    [2]
    于衍霞, 鲁战会, 安红周, 等. 中国米制品加工学科发展报告[J]. 中国粮油学报,2011,26(1):1−10. [YU Y X, LU Z H, AN H Z, et al. Report on the development of rice products processing in China[J]. Chinese Journal of Cereals and Oils,2011,26(1):1−10.
    [3]
    陆姗姗, 毕颖, 李辉. 我国大米重金属污染现状及检测技术进展[J]. 农业技术与装备,2020(5):9−10. [LU S S, BI Y, LI H. Status quo of heavy metal pollution in rice and progress of detection technology in China[J]. Agricultural Technology and Equipment,2020(5):9−10. doi: 10.3969/j.issn.1673-887X.2020.05.003
    [4]
    任韧, 龚立科, 王姝婷, 等. 杭州产大米中重金属污染状况调查及暴露风险评估[J]. 中国卫生检验杂志,2020,30(12):1516−1519, 1528. [REN R, GONG L K, WANG S T, et al. Investigation and exposure risk assessment of heavy metal pollution in rice grown in Hangzhou[J]. Chinese Journal of Health Inspection,2020,30(12):1516−1519, 1528.
    [5]
    张静, 施向东, 吕忠其, 等. 2019年南宁市种植稻米重金属污染监测结果[J]. 食品安全导刊,2020(3):93−95. [ZHANG J, SHI X D, LU Z Q, et al. Monitoring results of heavy metal pollution of rice in Nanning in 2019[J]. Food Safety Guide,2020(3):93−95.
    [6]
    覃焱, 韦燕燕, 顾明华. 中国市售大米重金属含量及健康风险评估[J]. 食品工业,2020,41(11):332−335. [QIN Y, WEI Y Y, GU M H. Heavy metal content and health risk assessment of rice sold in China[J]. Food Industry,2020,41(11):332−335.
    [7]
    李喆, 赵岚, 陈彦凤, 等. 大米中重金属检测技术研究进展[J]. 食品工业,2018,39(2):251−255. [LI J, ZHAO L, CHEN Y F, et al. Research Progress on detection technology of heavy metals in Rice[J]. Food Industry,2018,39(2):251−255.
    [8]
    WANG Z R, WEI F X, LIU Y Q, et al. Application of electroanalytical chemistry in the detection of heavy metal ions[J]. Hebei Industrial Science and Technology,2015,32(1):55−63.
    [9]
    于振, 李建科, 李梦颖, 等. 食品中微量硒测定方法研究进展[J]. 食品工业科技,2012,33(18):371−377. [YU Z, LI J K, LI M Y, et al. Progress in determination of trace Selenium in food[J]. Food Industry Technology,2012,33(18):371−377.
    [10]
    胡二曼. 重金属检测仪溯源方法与标准物质的研制[D]. 长沙: 湖南师范大学, 2018.

    HU E M. Traceability method of heavy metal detector and development of reference material[D]. Changsha, Hunan Normal University, 2018.
    [11]
    LI Y, LU J, GU L L, et al. Determination of selenium in Tartary Buckwheat by UV spectrophotometry[J]. GuiZhou Agricultural Sciences,2013,41(8):79−84.
    [12]
    SONG Z R, CHEN X L, XIONG Q R. Determination and analysis of seven trace elements in Angelica sinensis from different habitats[J]. Inspection and Testing in China,2019,27(2):39−40,16.
    [13]
    LUO F L, YANG C, LIN Q L, et al. Comparison of determination of cadmium in rice by atomic absorption spectrometry and rapid detection of heavy metals[J]. Science and Technology of Cereals, Oils and Foods,2016,24(3):59−61.
    [14]
    WU G H, CHEN A T, LI L. Application of atomic absorption spectrometry in the analysis of trace elements and heavy metals in Chinese herbal medicine[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition),2012,26(6):615−623.
    [15]
    ZHENG P. Application of atomic absorption spectrometry in the detection of heavy metals in food[J]. Agriculture and Technology,2020,40(8):36−37.
    [16]
    WANG Z Q, LIANG J Y, LI WJ, et al. Microwave digestion combined with ICP-OES and ICP-MS to determine the content of various mineral elements in chia seeds[J]. Science and Technology of Food Industry,2019,40(24):194−198.
    [17]
    冯婷婷, 但茜, 高敏, 等. ICP-MS测定贵州地区大米中Pd、Cd、As元素的含量及安全评估[J]. 广州化工,2020,48(14):108−110. [FENG T T, DAN Q, GAO M, et al. ICP-MS determination of Pd, Cd, As in rice in Guizhou area and safety assessment[J]. Guangzhou Chemical Industry,2020,48(14):108−110. doi: 10.3969/j.issn.1001-9677.2020.14.036
    [18]
    O A F, ZHANG T, LIANG LL. Inductively coupled plasma mass spectrometry (ICP-MS) determination of 9 heavy metal elements in livestock and poultry meat [J/OL]. Science and Technology of Food Industry: 1−18[2021-02-20]. http://kns.cnki.net/kcms/detail /11.17 59 .ts.20200914.1448.016.html.
    [19]
    王征. 四极杆碰撞/反应池研制及工作条件研究[D]. 天津: 天津大学, 2014.

    WANG Z. Development and working conditions of quadrupole collision/reaction cell[D]. Tianjin: Tianjin University, 2014.
    [20]
    MIN S C, RYU J S, PARK H Y et al. Precisedetermination of the lithium isotope ratio in geologi-cal samples using MC-ICP-MS with cool plasma[J]. J Anal Atom Spectrom,2013,28(4):505−509. doi: 10.1039/c2ja30293d
    [21]
    BARELA P S, SILVA N A, PEREIRA J S F, et al. Microwave-assisted digestion using diluted nitricacid for further trace elements determination inbiodiesel by SF-ICP-MS[J]. Fuel,2017,204:85−90. doi: 10.1016/j.fuel.2017.05.028
    [22]
    DEXTER M A, REID H J, SHARP B L. The effect of ion energy on reactivity and species selectivity in hexapole collision/reaction cell ICP-MS[J]. J Anal Atom Spectrom,2002,17(7):676−681. doi: 10.1039/b205674g
    [23]
    WU Y, WANG Y, MENG Q Z. Determination of trace elements in northeast rice by ICP-AES with microwave digestion[J]. The Food Industry,2018,39(2):324−327.
    [24]
    张萍, 刘宏伟. 基于ICP-MS/MS技术测定食用植物油中22种微量元素[J]. 中国食品学报,2019,19(12):250−257. [ZHANG P, LIU H W. Determination of 22 trace elements in edible vegetable oil by ICP-MS/MS[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(12):250−257.
    [25]
    杨雯懿, 郝婧, 田佳于, 等. 利用ICP-MS/MS测定白酒中无机元素的主成分分析及聚类分析[J]. 食品与发酵工业,2020,46(3):257−263. [YANG W Y, HAO J, TIAN J Y, et al. Principal Component analysis and cluster analysis for the determination of inorganic elements in liquor by ICP-QQQ[J]. Food and Fermentation Industries,2020,46(3):257−263.
    [26]
    CAO D, XU X, XUE S, et al. An in situ derivatization combined with magnetic ionic liquid-based fast dispersive liquid-liquid microextraction for determination of biogenic amines in food samples[J]. Talanta,2019,199:212−219. doi: 10.1016/j.talanta.2019.02.065
    [27]
    GB 2762-2017《食品安全国家标准食品中污染物限量》[J]. 中国食品卫生杂志, 2018, 30(3): 329−340

    GB 2762-2017 "National food safety standard limits of contaminants in foods"[J]. Chinese Journal of Food Hygiene, 2018, 30(3): 329−340.
  • Cited by

    Periodical cited type(8)

    1. 许鑫雨,黄挺. 基于数据挖掘和网络药理学探讨中药内服方治疗癌性疼痛的用药规律及作用机制. 中医临床研究. 2025(01): 35-45 .
    2. 杨必乾,何昱洁,何慧明,邓毅. 甘草中三萜皂苷类成分抗肿瘤及联合抗肿瘤机制研究进展. 中医药导报. 2024(01): 106-110+116 .
    3. 卜晓芬,李骏,朱虹. 甘草甜素调节Notch信号通路对肝细胞癌细胞增殖、凋亡和侵袭的影响. 河北医药. 2024(22): 3370-3374 .
    4. 张尚龙,连小龙,张楠,叶礼巧,马趣环,邓毅. 甘草活性成分单独及联合西药抗肿瘤作用的研究进展. 联勤军事医学. 2023(02): 176-181 .
    5. 成圆,王宇加,王婷婷,丁淼,樊梓鸾. 几种典型天然甜味剂的功能活性及食品加工应用. 现代食品科技. 2023(08): 326-333 .
    6. 张尚龙,张楠,连小龙,叶礼巧,马趣环,邓毅. 甘草内生菌联合顺铂对A549细胞的增殖及凋亡的影响. 重庆医科大学学报. 2023(10): 1173-1179 .
    7. 连小龙,令颖,张尚龙,马趣环,闫潇,张楠,叶立巧,邓毅. 甘草有效成分抗肿瘤作用机制及联合抗肿瘤研究进展. 中国实验方剂学杂志. 2022(11): 238-245 .
    8. 段君,许海,沈峰. 传统中医药文化视角下甘草在癌症治疗中的临床应用研究. 深圳中西医结合杂志. 2022(17): 126-128 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (376) PDF downloads (45) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return