WUYUN Dalai, HAO Jianxiong, LIU Haijie. Study of the Removal Chlorpyrifos in Apples and the Degradation Pathway[J]. Science and Technology of Food Industry, 2021, 42(17): 85−93. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020129.
Citation: WUYUN Dalai, HAO Jianxiong, LIU Haijie. Study of the Removal Chlorpyrifos in Apples and the Degradation Pathway[J]. Science and Technology of Food Industry, 2021, 42(17): 85−93. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020129.

Study of the Removal Chlorpyrifos in Apples and the Degradation Pathway

More Information
  • Received Date: February 19, 2021
  • Available Online: July 07, 2021
  • Objective: Through experiments and analysis of the degradation effect of chlorpyrifos on the surface of apples by acidic electrolyzed oxidizing water (EOW) under different conditions, a degradation pathway of chlorpyrifos was proposed to provide theoretical support for apple producing and processing industries. Methods: The specific experimental method used in this research was to use chlorpyrifos to simulate the pollution of the surface of apples at first, then to degrade the chlorpyrifos by soaking and shaking the apples in EOW with different ACC (10, 50, 100 mg/L) and pH (2.80, 5.80). The experiment used gas chromatography and GC-MS to analyze the residual amount of chlorpyrifos and degradation pathway. Results: The experimental results showed that the degradation efficiency of chlorpyrifos on the surface of apples was directly related to the reaction time and the concentration of available chlorine (ACC) when it was treated by strong acid electrolyzed oxidizing water (AcEW). As reaction time increased or the ACC increased, the degradation efficiency also increased. When the available chlorine concentration reached 50 mg/L with the immersion time reached 15 min, the degradation rate of chlorpyrifos reached more than 55%, which significantly differed with the control group in which apple was immersed in tap water (P<0.01). When the ACC was 100 mg/L, the degradation rate of chlorpyrifos exceeds 70%. Under same conditions, there was no significant difference between the AcEW and the slightly acidic electrolyzed water (SAEW) in the degradation effect of chlorpyrifos (P>0.05), and there was no significant difference between the immersion treatment and shaking treatment as it showed in experimental results (P>0.05). The surface treated with EOW had no effect on the main quality indicators of the apple itself (P>0.05). According to GC-MS analysis, the degradation products produced by the degradation of chlorpyrifosbys AcEW included chlorpyrifos oxide (CPO) and 3, 5, 6-trichloropyridin-2-ol (TCP). The possible degradation pathway, as we propose, is chlorpyrifos→CPO→TCP→small molecule organic matter→inorganic matter. Conclusion: This results may provide a new method for the apple processing industries in eliminating pesticide residues.
  • [1]
    中华人民共和国国家统计局[EB/OL]. (2021−04−03). https: //data.stats.gov.cn/easyquery.htm?cn=C01.

    National bureau of statistics of china[EB/OL]. (2021−04−03). https: //data.stats.gov.cn/easyquery.htm?cn=C01.
    [2]
    刘腾飞, 董明辉, 杨代凤, 等. 毒死蜱在茶叶上的残留消解动态与使用安全性[J]. 食品安全质量检测学报,2017,8(4):1383−1388. [LIU TengFei, DONG MingHui, YANG DaiFeng, et al. Residual degradation dynamics and safety of chlorpyrifos used in tea[J]. Journal of Food and Quality,2017,8(4):1383−1388.
    [3]
    姜莉莉, 武玉国. 毒死蜱环境安全性进展[J]. 农药科学与管理,2014,35(1):29−34. [Jiang Lili, Wu Yuguo. Research progress on environmental safety of chlorpyrifos[J]. Pesticide Science and Administration,2014,35(1):29−34. doi: 10.3969/j.issn.1002-5480.2014.01.008
    [4]
    吴静娜, 杨秀娟, 韦璐阳, 等. 覆膜栽培方式下毒死蜱、丙溴磷和三唑磷在金桔和土壤中的消解动态[J]. 西南农业学报,2018,31(9):1845−1850. [WU Jingna, YANG Xiujuan, WEI Luyang, et al. Degradation of chlorpyrifos, profenofos and triazophosin plastic-film mulching kumquat and soil[J]. Southwest China Journal of Agricultural Sciences,2018,31(9):1845−1850.
    [5]
    J Hoa, R Rosserb, M Hasania, et al. Degradation of chlorpyrifos and inactivation of Escherichia coli O157: H7 and Aspergillus niger on apples using an advanced oxidation process[J]. Food Control,2020,109:106−920.
    [6]
    Bouchard M F, Chevrier J, Harley Kim G, et al. Prenatalexposure to organophosphate pesticides and IQ in 7-year-old children[J]. Environmental Health Perspectives,2011,119(8):1189−1195. doi: 10.1289/ehp.1003185
    [7]
    Rauh VA, Perera FP, Horton M K, et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide[J]. Proceedings of the National Academy of Sciences,2012,109(20):7871−7876. doi: 10.1073/pnas.1203396109
    [8]
    Trasande L. When enough data are not enough to enact policy: The failure to banchlorpyrifos[J]. PLoS Biology,2017,15(12):e2003671. doi: 10.1371/journal.pbio.2003671
    [9]
    管鹏, 陈文龙. 2016-2018年贵州省宁县蔬菜水果20种农药残留状况分析[J]. 植物医生,2020,33(5):55−59. [GUAN Peng, CHEN Wenlong. Analysis of 20 pesticide residues in vegetables an fruits in zhenning county of Guizhouprovine from 2016 to 2018[J]. Plant Doctor,2020,33(5):55−59.
    [10]
    El Hawari K, MokhSamia, AI Iskandarani, et al. Pesticide residues in Lebanese apples and health risk assessment[J]. Food Addittives & Contaminants. Part B Surveillance,2019,12:81−89.
    [11]
    Antonio I, Annamaria M, Antony S, et al. Electrolyzed water as a potential agentfor controlling postharvest decay of fruitsand vegetables[M]. Postharvest Pathology-Next Generation Solutions to Reducing Losses and Enhancing Safety, Springer, 2021: 181−197.
    [12]
    Ding T, Oh D H, Liu D H. Electrolyzed water in food fundamentals and application[M]. Hangzhou: Zhejiang University Press, Springer, 2019: 1−2.
    [13]
    乌云达来, 梁铎, 郝建雄, 等. 强酸性电解水降解对硫磷动力学模型及降解产物[J]. 食品工业科技,2018,39(12):63−68. [WUYUN Dalai, LIANG Duo, HAO Jianxiong, et al. Kinetic model and pathway of parathion degraded by electrolyzed oxidizing water[J]. Science and Technology of Food Industry,2018,39(12):63−68.
    [14]
    Wang J, Han R. Removal of pesticide on food by electrolyzed water. In: Electrolyzed water in food: fundamentals and applications[M]. Springer, Singapore, 2019: 39−65.
    [15]
    Yao J J, Gao N Y, Deng Y, et al. Sonolytic degradation of parathion and the formation of byproducts[J]. Ultrasonics Sonochemistry,2010,17:802−809. doi: 10.1016/j.ultsonch.2010.01.016
    [16]
    张铁垣. 化验员手册(第2版)[M]. 北京: 中国电力出版社, 1996: 133−136.

    ZHANG Tieheng. Laboratory technician manual (2rd)[M]. Beijing: China Electric Power Press, 1996: 133−136.
    [17]
    曹健康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007: 34−37.

    CAO Jiankang, JIANG Weibo, ZHAO Yumei. Physiological and biochemical experiment guidance for fruits and vegetables after harvest[M]. Beijing: China Light Industry Press, 2007: 34−37.
    [18]
    田树革, 魏玉龙, 刘宏炳. Folin-Ciocalteu比色法测定石榴不同部位总多酚的含量[J]. 光谱实验室,2009,26(2):341−344. [TIAN Shuge, WEI Yulong, LIU Hongbing. Determination of total polyphenol in the different places of Punica granatum L by folin-ciocalteu colorimetry[J]. Chinese Journal of Spectroscopy Laboratory,2009,26(2):341−344. doi: 10.3969/j.issn.1004-8138.2009.02.045
    [19]
    杨兆艳. pH 示差法测定桑椹红色素中花青素含量的研究[J]. 食品科技,2007,32(4):201−203. [YANG Zhaoyan. Anthocyanin content in mulberry red pigment bypH- differential spectrophotometry[J]. Food Science and Technology,2007,32(4):201−203. doi: 10.3969/j.issn.1005-9989.2007.04.060
    [20]
    Wu J, Laird D A. Abiotic transformation of chlorpyrifos to chlorpyrifosoxon in chlorination water[J]. Environmental Toxicology and Chemistry,2003,22:261−264. doi: 10.1002/etc.5620220204
    [21]
    Zhang Y Y, Xiao Z, Chen F, et al. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment[J]. Ultrasonics Sonochemistry,2010,17:72−77. doi: 10.1016/j.ultsonch.2009.06.003
    [22]
    张庆芳, 王锋, 哈益明. 毒死蜱和氯氰菊酯的辐射降解及产物特性研究[J]. 中国农业科学,2010,43(5):1041−1049. [ZHANG Qingfang, WANG Feng, HA Yiming. Research on irradiation degradation and products characteristics of chlorpyrifos and cypermethrin[J]. Scientia Agricultura Sinica,2010,43(5):1041−1049. doi: 10.3864/j.issn.0578-1752.2010.05.020
    [23]
    Y H Huang, W P Zhang, S M Pang, et al. Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos[J]. Enviromental Research,2020,194:110660.
    [24]
    胡建英, 谢国红, 相泽贵子. 4-壬基酚在氯消毒过程中的氧化途径[J]. 环境化学,2002:254−257. [HU Jianying, XIE Guohong, AizawaTakako. Aqueous chlorination pathways of 4-nonylphenol[J]. Enviromental Chemistry,2002:254−257. doi: 10.3321/j.issn:0254-6108.2002.03.009
    [25]
    White G C. Handbook of chlorination and alternative disinfectant, 3rd[M]. Van Nostrand-Reinhold Publishers, New York, NY. USA. 1992: 184−191.
    [26]
    Devi L G, Murthy B N, Kumar S G. Photocatalytic activity of V5+, Mo6+and Th4+ doped polycrystalline TiO2 for the degradation under UV/solar light[J]. Journal of Molecular Catalysis A: Chemical,2009,308:174−181. doi: 10.1016/j.molcata.2009.04.007
    [27]
    Mahmod S, Mona G, Ibrahim, et al. Innovative photocatalytic reactor for the degradation of chlorpyrifos using acoated composite of ZrV2O7 and graphenenano-platelets[J]. Chemical Engineering Journal, 2020: 395: 124974.
  • Cited by

    Periodical cited type(7)

    1. 陈金足,韦晓雯,农晶晶,韩丽芳,冯学,唐婷范,李利军,程昊. 氢氧化镁-活性炭复合材料的制备及其对糖浆脱色工艺优化. 食品工业科技. 2025(01): 201-207 . 本站查看
    2. 蔡全龙,程昊,唐婷范,张文康,卫政涛,李利军. 双极性MgO纳米棒的制备、表征及其在原糖回溶糖浆脱色的应用. 食品研究与开发. 2025(03): 125-131 .
    3. 干莉娜,张文康,赵家欣,唐婷范,卫政涛,程昊. 壳聚糖-甘蔗渣活性炭复合材料的制备及在糖汁清净中的应用. 中国调味品. 2024(04): 25-31 .
    4. 林华,唐婷范,陈金足,苏萍萍,程昊. 水热法制备多孔硅酸镁及其对糖汁的脱色性能分析. 广西糖业. 2024(06): 419-425 .
    5. 唐婷范,任逸,朱家庆,黄芳丽,程昊. 氢氧化镁对蔗糖溶液中单宁酸的吸附性能研究. 中国调味品. 2022(08): 46-50 .
    6. 田鑫莉 ,张文康 ,李利军 ,卫政涛 ,程昊 . 硅酸镁-石灰乳法对原糖回溶糖浆脱色性能的研究. 食品工业. 2022(09): 51-55 .
    7. 王琪浩,王余莲,王楠,李闯,张俊,朱益斌,刘珈伊,时天骄,林永瑾,田伊笛,苏德生,袁志刚. 高比表面积羟基硅酸镁的制备及其形成机理研究. 沈阳理工大学学报. 2022(06): 58-65 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (254) PDF downloads (30) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return