CHEN Ming, WU Hao, ZHANG Wenli, et al. Molecular Modification of D-lyxose Isomerase with Weak Acid Characteristic and D-mannose Production[J]. Science and Technology of Food Industry, 2021, 42(17): 129−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020066.
Citation: CHEN Ming, WU Hao, ZHANG Wenli, et al. Molecular Modification of D-lyxose Isomerase with Weak Acid Characteristic and D-mannose Production[J]. Science and Technology of Food Industry, 2021, 42(17): 129−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020066.

Molecular Modification of D-lyxose Isomerase with Weak Acid Characteristic and D-mannose Production

More Information
  • Received Date: February 06, 2021
  • Available Online: June 20, 2021
  • The aim of this paper was to modify the weak acid characteristics of D-LI (the optimum pH was 6.5) from Thermoprotei archaeon, so as to produce D-mannose at pH5.5, thereby inhibiting the original maillard reaction and reducing the separation cost. Based on the strategy of protein sequence alignment and acid-base amino acid replacement, eight single point mutations were designed, and then three better single point mutants E82K, P105K and E165K were selected for further double-point mutation. The results showed that the optimum pH of the double-point mutant E82K/P105K was shifted from 6.5 to 6.0, and the enzyme activity at pH5.5 was 3.4 times higher than that of the original enzyme. When D-fructose and D-mannose were used as substrates, the kinetic parameters Km and kcat/Km of the mutant were 78.77 mmol/L and 328.12 mmol/L, 15.37 mmol/L−1·min−1 and 48.92 mmol/L−1·min−1, respectively. After reacting with 80 g/L of D-fructose for 10 h, the conversion rate of the double point mutant E82K/P105K at pH5.5 was close to that of the original enzyme at pH6.5, and the color and degree of Maillard reaction decreased about 3~4 times compared with the original enzyme, which provided a feasible enzyme preparation for industrial production of D-mannose by D-LI.
  • [1]
    Hu X, Shi Y L, Zhang P, et al. D-Mannose: Properties, production, and applications: An overview[J]. Comprehensive Reviews in Food Science and Food Safety,2016,15(4):773−785. doi: 10.1111/1541-4337.12211
    [2]
    El-Nakkady S S, Hanna M M, Roaiah H M, et al. Synthesis, molecular docking study and antitumor activity of novel 2-phenylindole derivatives[J]. European Journal of Medicinal Chemistry,2012,47(1):387−398.
    [3]
    Pablo S G, James O’Prey, Simone C, et al. Mannose impairs tumour growth and enhances chemotherapy[J]. Nature,2018,563(7733):719−723. doi: 10.1038/s41586-018-0729-3
    [4]
    吴惠娟, 韦曲星, 张盛昔, 等. 甘露糖对巨噬细胞炎症反应的双向调节作用[J]. 中山大学学报(医学科学版),2020,41(4):550−557. [Wu H J, Wei Q X, Zhang S X, et al. Dual-directional regulation effects of mannose on inflammatory response of macrophages[J]. Journal of Sun Yat-Sen University(Medical Sciences),2020,41(4):550−557.
    [5]
    Saha B C, Racine F M. Biotechnological production of mannitol and its applications[J]. Applied Microbiology and Biotechnology,2011,89(4):879−891. doi: 10.1007/s00253-010-2979-3
    [6]
    Wu H, Zhang W L, Mu W M. Recent studies on the biological production of D-mannose[J]. Applied Microbiology and Biotechnology,2019,103(21−22):8753−8761. doi: 10.1007/s00253-019-10151-3
    [7]
    Zhang T, Pan Z G, Qian C, et al. Isolation and purification of D-mannose from palm kernel[J]. Carbohydrate Research,2009,344(13):1687−1689. doi: 10.1016/j.carres.2009.06.018
    [8]
    张伟, 章朝晖, 梁光兴. 提高葡萄糖差向异构转化生成甘露糖收率的研究[J]. 化工技术与开发,2017,46(3):19−21. [Zhang W, Zhang Z H, Liang G X. Study on improving the yield of mannose from glucose epiisomerization[J]. Technology and Development of Chemical Industry,2017,46(3):19−21.
    [9]
    Park C S, Yeom S J, Lim Y R, et al. Substrate specificity of a recombinant D-lyxose isomerase from Serratia proteamaculans that produces D-lyxose and D-mannose[J]. Letters in Applied Microbiology,2010,51(3):343−350. doi: 10.1111/j.1472-765X.2010.02903.x
    [10]
    Kwon H J, Yeom S J, Park C S, et al. Substrate specificity of a recombinant D-lyxose isomerase from Providencia stuartii for monosaccharides[J]. Journal of Bioscience and Bioengineering,2010,110(1):26−31. doi: 10.1016/j.jbiosc.2009.12.011
    [11]
    Guo Z R, Long L K, Ding S J. Characterization of a D-lyxose isomerase fromBacillus velezensis and its application for the production of D-mannose and L-ribose[J]. AMB Express,2019,9:149. doi: 10.1186/s13568-019-0877-3
    [12]
    Yu L N, Zhang W L, Zhang T, et al. Efficient biotransformation of D-fructose to D-mannose by a thermostable D-lyxose isomerase from Thermosediminibacteroceani[J]. Process Biochemistry,2016,51(12):2026−2033. doi: 10.1016/j.procbio.2016.08.023
    [13]
    Cho EA, Lee DW, Cha YH, et al. Characterization of a novel D-lyxoseisomerase from Cohnellalaevoribosii RI-39 sp. nov[J]. 2007, 189(5): 1655-1663.
    [14]
    Choi J G, Hong S H, Kim Y S, et al. Characterization of a recombinant thermostable D-lyxose isomerase from Dictyoglomusturgidum that produces D-lyxose from D-xylulose[J]. Biotechnology Letters,2012,34(6):1079−1085. doi: 10.1007/s10529-012-0874-y
    [15]
    Lee S J, Lee D W, Choe E A, et al. Characterization of a thermoacidophilic L-arabinose isomerase fromAlicyclobacillus acidocaldarius: role of Lys-269 in pH optimum[J]. Applied and Environmental Microbiology,2005,71(12):7888−7896. doi: 10.1128/AEM.71.12.7888-7896.2005
    [16]
    Xu Z, Li S, Feng X H, et al. Function of aspartic acid residues in optimum pH control of L -arabinose isomerase from Lactobacillus fermentum[J]. Applied Microbiology and Biotechnology,2014,98:3987−3996. doi: 10.1007/s00253-013-5342-7
    [17]
    Oh D K, Oh H J, Kim H J, et al. Modification of optimal pH in L-arabinose isomerase from Geobacillus stearothermophilus for D-galactose isomerization[J]. Journal of Molecular Catalysis B: Enzymatic,2006,43:108−112. doi: 10.1016/j.molcatb.2006.06.015
    [18]
    Wu H, Chen M, Guang C E, et al. Identification of a novel recombinant D-lyxose isomerase from Thermoprotei archaeon with high thermostable, weak-acid and nickel ion dependent properties[J]. International Journal of Biological Macromolecules,2020,164:1267−1274. doi: 10.1016/j.ijbiomac.2020.07.222
    [19]
    Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research,2014,42(Web Server issue):252−258.
    [20]
    Laskowski R A, Macarthur M W, Moss D S. PROCHECK: A program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography,1993,26(2):283−291. doi: 10.1107/S0021889892009944
    [21]
    Chen Z W, Chen JJ, Zhang W L, et al. Improving thermostability and catalytic behavior of L-rhamnose isomerase from Caldicellulosiruptorobsidiansis OB47 toward D-allulose by site-directed mutagenesis[J]. Journal of Agricultural and Food Chemistry,2018,66(45):12017−12024. doi: 10.1021/acs.jafc.8b05107
    [22]
    Ajandouz EH. TchiakpeL S, Ore F D, et al. TchiakpeL S, Ore F D, et al. Effects of pH on caramelization and maillardreaction kinetics in fructose-lysine model systems[J]. Journal of Food Science,2001,66(7):926−931. doi: 10.1111/j.1365-2621.2001.tb08213.x
    [23]
    汪芳, 杨套伟, 周俊平. 提高天冬氨酸β-脱羧酶在酸性环境中催化活力的分子改造[J]. 应用与环境生物学报,2018,24(6):1411−1417. [Wang F, Yang T W, Zhou J P. Molecular modification of L-aspartate β-decarboxylase to improve its catalyticactivity under acidic condition[J]. Chinese Journal of Applied and Environmental Biology,2018,24(6):1411−1417.
    [24]
    朱姚, 孟凡举, 吕丹丹. 里氏木霉表达异源中性内切纤维素酶蛋白以改善最佳酶活pH[J]. 工业微生物,2014,44(5):37−41. [Zhu Y, Meng F J, Lv D D. Highly efficient expression of neutral endoglucanases in Trichoderma reesei to improve cellulolytic pH profile[J]. Industrial Microbiology,2014,44(5):37−41. doi: 10.3969/j.issn.1001-6678.2014.05.007
    [25]
    赵菡. 纳豆激酶热稳定性及pH稳定性的改造研究[D]. 无锡: 江南大学, 2018.

    Zhao H. Studies on enhanced thermal and pH stability of nattokinase[D]. Wuxi: Jiangnan University, 2018.
    [26]
    范晨. Alicyclobacillus hesperidum L-阿拉伯糖异构酶性质鉴定及分子改造[D]. 无锡: 江南大学, 2015.

    Fan C. Biochemical Characterization and molecular modification of L-arabinose isomerase from Alicyclobacillus hesperidum[D]. Wuxi: Jiangnan University, 2015.
    [27]
    Billaud C, Brun-Mérimée S, Louarme L, et al. Effect of glutathione and maillard reaction products prepared from glucose or fructose with glutathione on polyphenoloxidase from apple—I: Enzymatic browning and enzyme activity inhibition[J]. Food Chemistry,2004,84(2):223−233. doi: 10.1016/S0308-8146(03)00206-1
    [28]
    Friedman M. Food browning and its prevention: An overview[J]. Journal of Agriculture and Food Chemistry,1996,44(3):632−653.
    [29]
    Shen SC, Wu J SB. Maillard browning in ethanolic solution[J]. Food Chemistry and Toxicology,2004,69(4):273−279.
  • Cited by

    Periodical cited type(9)

    1. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    2. 池杰明. 虫草素抗肿瘤新型给药系统研究进展. 中外医疗. 2024(35): 195-198 .
    3. 卢茂芳,李薇,李小兰,唐湘黔,李柯. RP-HPLC双波长法同时测定参橘草营养强化饮液中5种成分的含量. 湖南中医杂志. 2023(03): 182-186 .
    4. 冯辽辽,马一翔,刘广平,黄琰莹,刘萱,贺晓龙. 北虫草菌糠中多糖的提取及成分测定. 延安大学学报(自然科学版). 2023(03): 29-34 .
    5. 宋羚,田迪,黄蓉,刘新会,罗家兴,马啸. 虫草素对肺癌细胞生长及迁移的影响. 菌物学报. 2022(07): 1088-1098 .
    6. 张鑫,周雪冰,高铭,吕游,王莹,杨春宇,朴英实,任香善. 虫草素通过激活AMPK和MAPK信号通路抑制脂代谢抑制人胃癌细胞的增殖和迁移. 细胞与分子免疫学杂志. 2022(06): 513-521 .
    7. 盛瑜,谭超杰,白丽丹,孙晶波,安丽萍,郭笑. 北虫草化学成分及药理作用研究进展. 中国食用菌. 2021(02): 1-5+22 .
    8. 徐悉哲,王言之,李世芬,胡奇,王玉邦. 蛹虫草对小鼠免疫功能的调节作用. 江苏医药. 2021(07): 661-663 .
    9. 蔡曦,尚超,孟丽荣. 虫草素抗肿瘤药理作用及其机制的研究进展. 药物评价研究. 2021(07): 1548-1554 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (264) PDF downloads (25) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return