WEI Guangqiang, ZHAO Na, FAN Yaozhu, et al. Optimization of Enzymatic Preparation Process of Hypoglycemic Peptide from Moringa oleifera Seeds by Response Surface Methodology and Its Hypoglycemic Activities Evaluation in Vitro[J]. Science and Technology of Food Industry, 2021, 42(24): 136−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020053.
Citation: WEI Guangqiang, ZHAO Na, FAN Yaozhu, et al. Optimization of Enzymatic Preparation Process of Hypoglycemic Peptide from Moringa oleifera Seeds by Response Surface Methodology and Its Hypoglycemic Activities Evaluation in Vitro[J]. Science and Technology of Food Industry, 2021, 42(24): 136−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020053.

Optimization of Enzymatic Preparation Process of Hypoglycemic Peptide from Moringa oleifera Seeds by Response Surface Methodology and Its Hypoglycemic Activities Evaluation in Vitro

More Information
  • Received Date: February 06, 2021
  • Available Online: October 22, 2021
  • In order to improve the resource utilization of Moringa oleifera seeds powder, enzymatic method was used to prepare hypoglycemic peptide from Moringa oleifera seeds. Taking the the degree of proteolysis and α-glucosidase inhibition rate as the response value, single-factor experimental screening and response surface method was used to optimize the optimum enzymatic hydrolysis time, liquid-to-material ratio, hydrolysis pH, enzyme addition, and enzymatic hydrolysis temperature. The hypoglycemic peptide with a molecular weight of <3 kDa were prepared by coarse separation by ultrafiltration, and their inhibitory effects on human liver cancer cells (HepG2 cells) were analyzed by MTT method. The results showed that the optimal conditions of enzymatic hydrolysis were as follows: Time 4.6 h, ratio of liquid to material 40.5:1, pH8.3, enzyme dosage 5.5%, temperature 55 ℃, and the inhibition rate of α-glucosidase was 23.62%±0.14%. The α-glucosidase inhibition rate of the ultrafiltration fraction with a molecular weight of less than 3 kDa had an IC50 value of 5.56 mg/mL. When the concentration of ultrafiltration fraction was 300 μg/mL, the proliferation of HepG2 cells was significantly inhibited after 48 h(P<0.05). The research could lay the foundation for the further separation and purification of hypoglycemic peptide from Moringa oleifera seeds.
  • [1]
    许敏, 赵三军, 宋晖, 等. 辣木的研究进展[J]. 食品科学,2016,37(23):291−301. [XU M, ZHAO S J, SONG H, et al. Advances in knowledge of Moringa oleifera[J]. Food Science,2016,37(23):291−301. doi: 10.7506/spkx1002-6630-201623048
    [2]
    BRILHANTE R S N, SALES J A, PEREIRA V S, et al. Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population[J]. Asian Pacific Journal of Tropical Medicine,2017,10(7):621−630. doi: 10.1016/j.apjtm.2017.07.002
    [3]
    MUNE M A M, NYOBE E C, BASSOGOG C B, et al. A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds[J]. Cogent Food & Agriculture,2016,2(1):1−8.
    [4]
    IJAROTIMI O S, ADEOTI O A, ARIYO O. Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour[J]. Food Science & Nutrition,2013,1(6):452−463.
    [5]
    OLIVEIRA J T A, SILVEIRA S B, VASCONCELOS I M, et al. Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lamarck[J]. Journal of the Science of Food and Agriculture,1999,79(6):815−820. doi: 10.1002/(SICI)1097-0010(19990501)79:6<815::AID-JSFA290>3.0.CO;2-P
    [6]
    许培娥. 关于糖尿病患者社区护理干预的综述[J]. 医学信息,2016,29(8):297−297. [XU P E. Review on community nursing intervention for patients with diabetes mellitus[J]. Medical Information,2016,29(8):297−297. doi: 10.3969/j.issn.1006-1959.2016.08.236
    [7]
    晏黎, 田静. 降糖药物的研究进展[J]. 中国医药导报,2008,5(2):2224. [YAN L, TIAN J. Research progress of hypoglycemic drugs[J]. China Medical Herald Chin Med Herald,2008,5(2):2224.
    [8]
    程素娇, 张英, 王立, 等. 天然资源功能因子降血糖研究进展[J]. 食品工业科技,2012,33(12):387−391. [CHENG S J, ZHANG Y, WANG L, et al. Review of the natural functional ingredients for decreasing blood glucose level[J]. Science and Technology of Food Industry,2012,33(12):387−391.
    [9]
    KHANNA P, JAIN S C, PANAGARIYA A, et al. Hypoglycemic activity of polypeptide-p from a plant source[J]. Journal of Natural Products,1981,44(6):648−55. doi: 10.1021/np50018a002
    [10]
    KWON D Y, HONG S M, AHN I S, et al. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro[J]. Nutrition,2011,27:244−52. doi: 10.1016/j.nut.2010.02.004
    [11]
    包焜, 陈萍, 毕云枫, 等. 灵芝活性组分在小鼠体内的降糖功效研究[J]. 中国兽药杂志,2015(1):29−32. [BAO K, CHEN P, BI Y F, et al. Hypoglycemic effect of active components of Ganoderma lucidum in mice[J]. Chinese Journal of Veterinary Drug,2015(1):29−32.
    [12]
    MOJICA L, MEJÍA E G D. Optimization of enzymatic production of anti-diabetic peptides from black bean(Phaseolus vulgaris L. ) proteins, their characterization and biological poten-tial[J]. Food Function,2016,7:713−727. doi: 10.1039/C5FO01204J
    [13]
    林树花. 栝楼籽蛋白质的提取工艺及其功能特性研究[D]. 长沙: 湖南农业大学, 2017.

    LIN S H. Study on the extraction process of protein and its functional characteristics from Trichosanthes kirilowii seed[D]. Changsha: Hunan Agricultural University, 2017.
    [14]
    王晟, 崔洁, 顾欣, 等. 木瓜蛋白酶制备山杏源降糖肽工艺优化研究[J]. 食品工业科技,2014,35(9):169−173. [WANG S, CUI J, GU X, et al. Optimization on preparation of hypoglycemic peptides from apricot(Armeniaca sibirica) hydrolyzed by papain[J]. Science and Technology of Food Industry,2014,35(9):169−173.
    [15]
    林恋竹, 朱启源, 赵谋明. 辣木籽抗氧化肽的制备及其对氧化损伤红细胞的保护作用[J]. 食品科学,2019,40(7):40−46. [LIN L Z, ZHU Q Y, ZHAO M M. Preparation of antioxidant peptide from Moringa oleifera seeds and its protective effects on oxidatively damaged erythrocytes[J]. Food Science,2019,40(7):40−46. doi: 10.7506/spkx1002-6630-20180319-241
    [16]
    王雪峰, 陈越, 赵琼, 等. 响应面试验优化酶法制备辣木籽多肽工艺及其抑菌活性分析[J]. 现代食品科技,2019(1):173−181. [WANG X F, CHEN Y, ZHAO Q, et al. Optimization of enzymatic hydrolysis of Moringa oleifera seed protein by response surface methodology and the antibacterial activity of peptides of protein hydrolysate[J]. Modern Food Science and Technology,2019(1):173−181.
    [17]
    NIELSEN P M, PETERSEN D, DAMBMANN C. Improved method for determining food protein degree of hydrolysis[J]. Journal of Food Science,2001,66(5):642−646. doi: 10.1111/j.1365-2621.2001.tb04614.x
    [18]
    LIM J, KIM D K, SHIN H, et al. Different inhibition properties of catechins on the individual subunits of mucosal α-glucosidases as measured by partially-purified rat intestinal extract[J]. Food & Function,2019,10:4407−4413.
    [19]
    姚兴梅, 郭丹, 姚帅. 绿茶富硒蛋白对肝癌HepG细胞的抑制作用[J/OL]. 现代食品科技: 1−6 [2021-03-18]. https://doi.org/10.13982/j.mfst.1673-9078.2021.4.0825.

    YAO X M, GUO D, YAO S. Analysis on the inhibitory effect of selenium-rich protein in green tea on hepg cells in hepatocellular carcinoma[J]. Modern Food Science and Technology: 1−6 [2021-03-18]. https://doi.org/10.13982/j.mfst.1673-9078.2021.4.0825.
    [20]
    YU Z P, YIN Y G, ZHAO W Z, et al. Antidiabetic activity peptides from albumin against aglucosidase and amylase[J]. Food Chemistry,2012,88(6):7880.
    [21]
    刘萍, 陈黎斌, 杨严俊. 酶解玉米蛋白制备降血压肽的研究[J]. 食品工业科技,2006,27(5):117−119. [LIU P, CHEN L B, YANG Y J. The study of antihypertensive peptides from corn gluten meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2006,27(5):117−119. doi: 10.3969/j.issn.1002-0306.2006.05.037
    [22]
    ZHENG Z, SI D, AHMAD B, et al. Optimization, characterization and identification of antioxidative peptide derived from chicken blood corpuscle hydrolysate[J]. Food Research International,2018,106(Apr.):410−419.
    [23]
    王振宇, 杨丽娜, 李宏菊. 碱提酸沉法提取红松仁分离蛋白的工艺研究[J]. 黑龙江八一农垦大学学报,2008,20(6):71−74. [WANG Z Y, YANG L N, LI H J. Study on technology of separating protein from pine nut by alkali-extraction and acid-precipitatio[J]. Journal of Heilongjiang August First Land Reclamation University,2008,20(6):71−74. doi: 10.3969/j.issn.1002-2090.2008.06.019
    [24]
    HUANG F, WU W. Antidiabetic effect of a new peptide from Squalus mitsukurii liver (S-8300) in alloxan-diabetes[J]. Clinical & Experimental Pharmacology & Physiology,2010,32(7):521−525.
    [25]
    LIN L, LV S, LI B. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates[J]. Food Chemistry,2012,131(1):225−230. doi: 10.1016/j.foodchem.2011.08.064
    [26]
    刘丽君. 驼血抗氧化与降糖活性肽的制备与鉴定[D]. 呼和浩特: 内蒙古农业大学, 2019.

    LIU L J. Preparation and identifi-cation of antioxidant and hypoglycemic bioactive peptide from camel blood[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [27]
    张晶, 张怡一, 徐斐然, 等. 菜籽多肽体外和细胞内抗氧化性评价及氨基酸分析[J]. 食品科学,2016,37(13):36−41. [ZAHNG J, ZHANG Y Y, XU F R, et al. Antioxidant activities in vitro and in cells and amino acid composition of rapeseed peptides[J]. Food Science,2016,37(13):36−41. doi: 10.7506/spkx1002-6630-201613007
    [28]
    王立峰, 王玉梅, 张晶, 等. 菜籽蛋白水解物体外和细胞内抗氧化性评价及氨基酸分析研究[J]. 食品科学,2014,35(13):49−53. [WANG L F, WANG Y M, ZHANG J, et al. Antioxidant activities in vitro and in cells and amino acid composition of rapeseed protein hydrolysates(RPHs)[J]. Food Science,2014,35(13):49−53. doi: 10.7506/spkx1002-6630-201413009
    [29]
    YU Z, YIN Y, ZHAO W, et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase[J]. Food Chemistry,2011,129(4):1376−1382. doi: 10.1016/j.foodchem.2011.05.067
  • Cited by

    Periodical cited type(20)

    1. 罗密,尹旺,郭崇韬,邓仁菊,付梅,包维嘉. 不同品种甘薯的淀粉结构与理化特性. 贵州农业科学. 2025(01): 10-17 .
    2. 罗密,尹旺,邓仁菊,关郁芳,潘牧,吴巧玉,付梅. 基于主成分分析和聚类分析对不同品种甘薯淀粉与粉条品质的综合评价. 食品工业科技. 2025(04): 246-257 . 本站查看
    3. 金喜龙,丁杨,王中利,孟新莉,李斌. 糯质高粱酿造凤香型白酒初探. 酿酒. 2025(02): 109-113 .
    4. 罗密,郭崇韬,关郁芳,尹旺,邓仁菊,包维嘉. 不同紫甘薯品种淀粉理化特性的比较分析. 粮食与油脂. 2025(04): 21-27+75 .
    5. 盛周杨,邹波,吴继军,肖更生,徐玉娟,余元善,陈晓维,钟思彦. 木薯淀粉和改性淀粉结构特性及其与粉圆品质的关系. 广东农业科学. 2024(01): 127-135 .
    6. 宋永,贾璐泽,张一婷,刘佳莉,刘大军,孙庆申. 金冠豆角籽粒淀粉组成及性质研究. 食品工业科技. 2024(07): 59-67 . 本站查看
    7. 莫祥秋,张明波,窦德强. 双波长法测定人参中淀粉含量. 中国现代中药. 2024(07): 1150-1156 .
    8. 冉腾飞,夏茹,李永鹏,高娅,杨才,黄安柱,田山君. 蔓薯并长期遮荫对商薯19淀粉加工品质及营养品质的影响. 山东农业科学. 2024(11): 44-51 .
    9. 胡方洋,邓健,张得祥,刘彩华,麦馨允,朱正杰. 凯特芒果淀粉的提取及其性质研究. 食品与生物技术学报. 2024(10): 163-172 .
    10. 赵灿,陶星宇,汤尚文,刘传菊,豁银强,张倩. 甘薯淀粉对山药凝胶肠理化特性的影响. 中国粮油学报. 2023(02): 58-65 .
    11. 陈炜璇,庄婉娴,吴迁迁,何恒涛,胡海茵,孙若欣,宋贤良. 紫米粉圆感官评价及质构特性的相关性分析. 食品与机械. 2023(03): 11-16+22 .
    12. 唐云,闫海彦,赵亚雄,郇丹,宗文文,宋菲红. 碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨. 食品工业科技. 2023(13): 272-280 . 本站查看
    13. 卜庆状,邹雪梅,郝晓莉,詹德江. 4种消除高粱直链淀粉测定中支链淀粉干扰的方法比较. 食品工业. 2023(06): 295-298 .
    14. 刘建垒,商博,邢晓婷,张东,常柳,孙辉,段晓亮. 4种方法测定小米直链淀粉含量的比较. 食品科学. 2023(12): 217-224 .
    15. 许鑫,王斌,崔波. 可生物降解改性淀粉基薄膜的特性及应用研究进展. 食品工业科技. 2023(15): 474-481 . 本站查看
    16. 王庆宇,周平,王贵军,倪靖岳,李徐森,钟帅,李威,罗明宇. 不同品种糯高粱酿造酱香型白酒对比研究. 中国酿造. 2023(08): 65-70 .
    17. 王立,殷剑美,韩晓勇,蒋璐,郭文琦,金林,张培通. 芋可溶性淀粉合成酶CeSS基因家族的克隆和表达分析. 江苏农业学报. 2023(04): 939-946 .
    18. 邹浩峰,廖雨华,黄师荣,隋勇,熊添,施建斌,蔡沙,蔡芳,梅新. 不同生物酶协同植物乳杆菌发酵对紫甘薯生全粉理化特性的影响. 中国粮油学报. 2023(08): 213-220 .
    19. 许丽蓉,李闯,刘洋,黄璇,张旭,邓萍,戴求仲,夏敏,蒋桂韬,范志勇. 稻谷对鹅的营养价值评定及代谢能预测. 动物营养学报. 2023(11): 7192-7200 .
    20. 赵令敏,张艳芳,邢丽南,葛明然,刘小燕,霍秀文. 山药异淀粉酶基因克隆及其在淀粉代谢中的作用. 西北植物学报. 2022(11): 1827-1834 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (179) PDF downloads (41) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return