QING Shuting, YANG Feng, ZHANG Hailun, et al. Far-infrared Assisted Heat Pump Drying of Edible Roses Petals and the Product Quality Analysis[J]. Science and Technology of Food Industry, 2021, 42(22): 246−253. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020038.
Citation: QING Shuting, YANG Feng, ZHANG Hailun, et al. Far-infrared Assisted Heat Pump Drying of Edible Roses Petals and the Product Quality Analysis[J]. Science and Technology of Food Industry, 2021, 42(22): 246−253. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020038.

Far-infrared Assisted Heat Pump Drying of Edible Roses Petals and the Product Quality Analysis

More Information
  • Received Date: February 04, 2021
  • Available Online: September 12, 2021
  • In order to explore the feasibility of far-infrared assisted heat pump drying of edible rose petals and the influence of far-infrared assisted heat pump drying on the quality of edible roses. In this paper, far-infrared assisted heat pump technology was used to dry edible rose petals, and the effects of different heat pump temperatures (40, 50, 60 ℃) and far-infrared assisted methods (far-infrared is in the whole, forward or backward process of heat pump drying respectively) were investigated. Drying characteristics, energy consumption, and the effect on the quality and biologically active ingredients of roses were discussed. The study found that when the heat pump temperature was 60 ℃ and dried for 45 minutes, the unit energy consumption and dehumidification was the largest, which was 2.73 g/(kW·h). This moment was determined to be the time point for dividing the drying process and the back process. The results showed that when the heat pump temperature was 60 ℃, the far-infrared power was 4 kW, and the far-infrared back-end assisted heat pump was used for drying, the drying time was the shortest and the total energy consumption was the lowest. After drying for 120 minutes, the moisture content was 11.59%. Compared with the single heat pump drying, the drying time was shortened by 33.33%, and the total energy consumption was reduced by 36.18%. The proanthocyanidins, vitamin C and polysaccharide components of the product were well maintained. The DPPH free radical scavenging rate was the highest, and it was closer to the color of fresh roses. The change of moisture content of rose petals during far infrared-assisted heat pump drying could be well fitted by tian model equation. Studies had shown that the far-infrared assisted heat pump technology for drying edible rose petals was safe, efficient, low energy consumption, and high-quality products. This technology was expected to be piloted in the industry.
  • [1]
    刘嘉, 赵庆年, 曾庆琪. 玫瑰花的化学成分及药理作用研究进展[J]. 食品与药品,2019(4):328−332. [LIU J, ZHAO Q, ZENG Q. Advances in chemical constituents and pharmacological activities of roses[J]. Food and Drugs,2019(4):328−332. doi: 10.3969/j.issn.1672-979X.2019.04.018
    [2]
    周淑荣. 玫瑰的应用现状及开发前景[J]. 特产研究,2009,31(2):77−80. [ZHOU S. Current application and developmental prospect of rose[J]. Special Wild Economic Animal and Plant Research,2009,31(2):77−80. doi: 10.3969/j.issn.1001-4721.2009.02.026
    [3]
    陈杨华, 徐珩, 廖玉璠. 玫瑰花热风干燥实验及模型研究[J]. 热科学与技术,2017(2):132−136. [CHEN Y, XU H, LIAO Y. Experimental and model study on hot air drying of rose[J]. Journal of Thermal Science and Technology,2017(2):132−136.
    [4]
    廖玉璠. 太阳能热泵系统在烘干玫瑰花中的应用[D]. 南昌: 南昌大学, 2016.

    LIAO Y. Solar asist heat pump system used in the drying of roses[D]. Nanchang: Nanchang University, 2016.
    [5]
    刘巍, 马俊贵, 余成, 等. 我国农产品干燥装备技术与发展趋势[J]. 农业工程,2016,6(6):29−33. [LIU W, MA J, YU C, et al. Technology and development trend of agricultural products drying equipment in China[J]. Agricultural Engineering,2016,6(6):29−33. doi: 10.3969/j.issn.2095-1795.2016.06.013
    [6]
    何万宝. 农产品干燥加工节能减排工艺及设备[J]. 南方农机,2016,47(6):64−65. [HE W. Energy-saving and emission reduction technology and equipment for agricultural product drying and processing[J]. China Southern Agricultural Machinery,2016,47(6):64−65. doi: 10.3969/j.issn.1672-3872.2016.06.043
    [7]
    李晓燕, 强秋秋, 樊博玮, 等. 热管-热泵和红外-热泵联合干燥技术在农产品加工中的应用[J]. 食品与机械,2019,35(9):222−225, 232. [LI X, QIANG Q, FAN B, et al. Application of heat pipe-heat pump and infrared-heat pump in agricultural product processing[J]. Food and Machinery,2019,35(9):222−225, 232.
    [8]
    HOU H, CHEN Q, BI J, et al. Understanding appearance quality improvement of jujube slices during heat pump drying via water state and glass transition[J]. Journal of Food Engineering,2019,272:109874.
    [9]
    钱炳俊, 苏树强, 连之伟, 等. 热泵干燥技术在水产品加工应用中的研究概况[J]. 浙江农业科学,2010(4):830−834. [QIAN B, SU S, LIAN Z, et al. Research overview of heat pump drying technology in aquatic product processing and application[J]. Journal of Zhejiang Agricultural Sciences,2010(4):830−834. doi: 10.3969/j.issn.0528-9017.2010.04.047
    [10]
    刘飞, 王云, 李春华, 等. 茶叶干燥技术研究现状及展望[J]. 中国农学通报,2015,31(6):210−215. [LIU F, WANG Y, LI C, et al. Research status and prospect of tea drying technology[J]. Chinese Agricultural Science Bulletin,2015,31(6):210−215. doi: 10.11924/j.issn.1000-6850.casb14110098
    [11]
    武华文. 哈密瓜片远红外干燥特性及品质工艺试验研究[D]. 阿拉尔: 塔里木大学, 2020.

    WU H. Experimental study on far-infrared drying characteristics and quality technology of cantaloupe slices[D]. Alaer: Tarim University, 2020.
    [12]
    YAO L, FAN L, DUAN Z. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices[J]. Food Chemistry, 2020, 305: 125477.
    [13]
    SONG X, HU H, ZHANG B. Drying characteristics of chinese yam (Dioscorea opposita Thunb.) by far-infrared radiation and heat pump[J]. Journal of the Saudi Society of Agricultural Sciences,2018,17(3):290−296. doi: 10.1016/j.jssas.2016.05.008
    [14]
    宋小勇. 远红外辅助热泵干燥对铁棍山药片品质影响[J]. 核农学报,2015,29(7):1337−1343. [SONG X. Study on iron yam chips by far-infrared-assisted heat pump drying[J]. Journal of Nuclear Agricultural Sciences,2015,29(7):1337−1343. doi: 10.11869/j.issn.100-8551.2015.07.1337
    [15]
    NATHAKARANAKULE A, JAIBOON P, SOPONRONNARIT S. Far-infrared radiation assisted drying of longan fruit[J]. Journal of Food Engineering,2010,100(4):662−668. doi: 10.1016/j.jfoodeng.2010.05.016
    [16]
    YUE J, SONG X, DENG Y, et al. Effects of far infrared-assisted heat pump drying on drying characteristics, water status, total phenols and antioxidant properties of banana (Musa sapientum L.) slices[J]. Journal of Food Agriculture and Environment,2013,11(3-4):505−510.
    [17]
    汪岳刚, 邓云, 王丹凤, 等. 鱿鱼片远红外热泵干燥中水分迁移及品质变化[J]. 食品与机械,2013,29(6):34−37, 53. [WANG Y, DENG Y, WANG D, et al. Changes in moisture state and quality of squid fillets dried by far infrared radiation assisted heat pump drying[J]. Food and Machinery,2013,29(6):34−37, 53.
    [18]
    罗磊, 康新艳, 朱文学, 等. 热泵远红外联合干燥金银花的工艺优化及品质控制[J]. 食品科学,2016,37(18):6−12. [LUE L, KANG X, ZHU W, et al. Optimization of far-infrared assisted heat pump drying parameters for quality control of dried honeysuckle[J]. Food Science,2016,37(18):6−12. doi: 10.7506/spkx1002-6630-201618002
    [19]
    田华, 韩艳婷. 苦瓜微波干燥特性及动力学模型[J]. 食品研究与开发,2017,38(23):125−129. [TIAN H, HAN Y. Microwave drying characteristics and dynamic model of balsam pear[J]. Food Research and Development,2017,38(23):125−129. doi: 10.3969/j.issn.1005-6521.2017.23.023
    [20]
    陈思奇, 顾苑婷, 王霖岚, 等. 刺梨不同干燥模型建立及综合品质分析[J]. 食品科学,2020,41(3):47−54. [CHEN S, GU Y, WANG L, et al. Drying modeling and comprehensive quality analysis of Rosa roxburghii Tratt fruit[J]. Food Science,2020,41(3):47−54. doi: 10.7506/spkx1002-6630-20190503-009
    [21]
    谭颖, 陈国菊, 程玉瑾, 等. 玫瑰花瓣压花材料热风干燥动力学模型[J]. 天然产物研究与开发,2015,27(6):1037−1041. [TAN Y, CHEN G, CHEN Y, et al. Dynamic model of hot-air drying for rose petals as pressed flower materials[J]. Natural Product Research and Development,2015,27(6):1037−1041.
    [22]
    赵红霞, 王应强, 何佳昕, 等. 干燥方法对速食薏米粉干燥特性与品质的影响[J]. 食品工业科技,2020,41(13):22−26, 31. [ZHAO H, WANG Y, HE J, et al. Effect of drying methods on drying characteristics and quality of instant coix seed flour[J]. Science and Technology of Food Industry,2020,41(13):22−26, 31.
    [23]
    王应强, 温建华, 刘爱青, 等. 浸泡与米水比例对预烹调小米微波对流恒温干燥特性与品质的影响[J]. 食品与机械,2017,33(6):190−195, 206. [WANG Y, WEN J, LIU A, et al. Influence of soaking and millet/water ratio on microwave-convective drying characteristics and quality of cooked millet under the constant temperature[J]. Food and Machinery,2017,33(6):190−195, 206.
    [24]
    QIU G, WANG D, SONG X, et al. Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices[J]. Food Research International,2018,105:121−128. doi: 10.1016/j.foodres.2017.10.050
    [25]
    马翠亚, 杨开敏, 王远成. 热泵技术在农产品干燥中的应用[J]. 区域供热,2019(4):13−20. [MA C, YANG K, WANG Y. Application of agricultural product heat pump drying technology[J]. District Heating,2019(4):13−20.
    [26]
    张黎骅, 武莉峰, 党鑫凯, 等. 鲜切高山野山药片微波间歇干燥特性研究[J]. 食品与机械,2017,33(1):39−44, 92. [ZHANG L, WU L, DANG X, et al. Drying characteristics of intermittent microwave heated fresh-cut high mountain yam slice[J]. Food and Machinery,2017,33(1):39−44, 92.
    [27]
    姬长英, 蒋思杰, 张波, 等. 辣椒热泵干燥特性及工艺参数优化[J]. 农业工程学报,2017,33(13):296−302. [JI C, JIANG S, ZHANG B, et al. Heat pump drying properties of chili and optimization of technical parameters[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(13):296−302. doi: 10.11975/j.issn.1002-6819.2017.13.039
    [28]
    和丽媛, 杨志龙, 樊丹敏. 玫瑰功能成分及产品开发研究进展[J]. 食品工业科技, 2021, 42(14): 408−413.

    HE L, YANG Z, FAN D. Research progress on functional components and product development of rose[J]. Science and Technology of Food Industry, 2021, 42(14): 408−413.
    [29]
    韩宗元, 李晓静, 白智慧, 等. 喷雾干燥条件对树莓粉理化性质和抗氧化性质的影响[J]. 农业工程学报,2018,34(6):272−277. [HAN Z, LI X, BAI Z, et al. Effects of spray drying conditions on physicochemical properties and antioxidant activities of raspberry powder[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(6):272−277. doi: 10.11975/j.issn.1002-6819.2018.06.034
    [30]
    陈登宇, 朱锡锋. 生物质热反应机理与活化能确定方法Ⅰ.干燥段研究[J]. 燃料化学学报,2011,39(8):580−584. [CHEN D, ZHU X. Thermal reaction mechanism of biomass and determination of activation energy Ⅰ. drying section[J]. Journal of Fuel Chemistry and Technology,2011,39(8):580−584. doi: 10.3969/j.issn.0253-2409.2011.08.004
    [31]
    穆欢. 多功能封闭式热泵干燥系统的性能研究[D]. 广州: 广州大学, 2019.

    MU H. Research on the performance of multifunctional closed heat pump drying system[D]. Guangzhou: Guangzhou University, 2019.
    [32]
    段续, 张萌, 任广跃, 等. 玫瑰花瓣红外喷动床干燥模型及品质变化[J]. 农业工程学报,2020,36(8):238−245. [DUAN X, ZHANG M, REN G, et al. Drying models and quality changes of rose subjected to infrared assisted spouted bed drying[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(8):238−245. doi: 10.11975/j.issn.1002-6819.2020.08.029
    [33]
    吴惠玲, 王志强, 韩春, 等. 影响美拉德反应的几种因素研究[J]. 现代食品科技,2010,26(5):441−444, 440. [WU H, WANG Z, HAN C, et al. Factors affecting the maillard reaction[J]. Modern Food Science and Technology,2010,26(5):441−444, 440.
    [34]
    郭玲玲. 香菇中短波红外干燥工艺及应用研究[D]. 长沙: 湖南农业大学, 2016.

    GUO L. Research on drying technology and application of mid-short wave infrared mushroom[D]. Changsha: Hunan Agricultural University, 2016.
  • Cited by

    Periodical cited type(13)

    1. 宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
    2. 龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 . 本站查看
    3. 罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
    4. 武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
    5. 张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
    6. 窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
    7. 李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
    8. 黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
    9. 赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 . 本站查看
    10. 李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
    11. 陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
    12. 魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
    13. 袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return