WAN Feng, LI Qingzhou, XIE Bo. Research Progress on the Relationship between Intestinal Flora and Extreme Environment[J]. Science and Technology of Food Industry, 2022, 43(4): 420−427. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020010.
Citation: WAN Feng, LI Qingzhou, XIE Bo. Research Progress on the Relationship between Intestinal Flora and Extreme Environment[J]. Science and Technology of Food Industry, 2022, 43(4): 420−427. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020010.

Research Progress on the Relationship between Intestinal Flora and Extreme Environment

More Information
  • Received Date: February 01, 2021
  • Available Online: December 17, 2021
  • The dynamic balance of intestinal flora is one of the important signs of maintaining human health, and the development of many human diseases have been confirmed to be closely related to intestinal flora disorders. Environment is a crucial factor affecting intestinal flora, which can be further divided into conventional environment and extreme environment, however there are few studies on the interrelationship between the extreme environment and the intestinal flora, which is of great significance for the special crowds who work under special environment. Therefore, this article focuses on extreme environment, exploring the changes of human intestinal flora in the plateau, aerospace, navigation and other environments, as well as the regulation of intestinal flora through dietary intervention, in order to provide references for adapting to extreme environments and improving the health of special populations.
  • [1]
    EISENSTEIN M. The hunt for a healthy microbiome[J]. Nature,2020,577(7792):S6−S8. doi: 10.1038/d41586-020-00193-3
    [2]
    TIGHE S, AFSHINNEKOO E, ROCK T M, et al. Genomic methods and microbiological technologies for profiling novel and extreme environments for the extreme microbiome project (XMP)[J]. Journal of Biomolecular Techniques Jbt,2017,28(1):31−39. doi: 10.7171/jbt.17-2801-004
    [3]
    DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature,2013,505(7484):559−563.
    [4]
    OLIPHANT K, ALLEN-VERCOE E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health[J]. Microbiome,2019,7(1):1−15. doi: 10.1186/s40168-018-0604-3
    [5]
    ASHLEY Y. Delivery of the gut microbiome[J]. Nature Reviews Microbiology,2018,16(9):520−521.
    [6]
    SALAZAR N, VALDÉS-VARELA L, GONZÁLEZ S, et al. Nutrition and the gut microbiome in the elderly[J]. Gut Microbes,2017,8(2):82−97. doi: 10.1080/19490976.2016.1256525
    [7]
    BOUCHIE A. White house unveils national microbiome initiative[J]. Nature Biotechnology,2016,34(6):580.
    [8]
    WU Y B, WAN J W, CHOE U, et al. Interactions between food and gut microbiota: Impact on human health[J]. Annual Review of Food Science and Technology,2019,10(1):389−408. doi: 10.1146/annurev-food-032818-121303
    [9]
    JOHNSON V A. Gut microbiome composition and diversity are related to human personality traits[J]. Human Microbiome Journal,2020,15:1−15.
    [10]
    CAITRÍONA LONG-SMITH, O'RIORDAN K J, CLARKE G, et al. Microbiota-Gut-Brain Axis: New therapeutic opportunities[J]. Annual Review of Pharmacology,2020,60(1):1−26. doi: 10.1146/annurev-pharmtox-082719-110050
    [11]
    ADOLPH T E, GRANDER C, MOSCHEN A R, et al. Liver–Microbiome axis in health and disease[J]. Trends in Immunology,2018,39(9):712−723. doi: 10.1016/j.it.2018.05.002
    [12]
    VALDES A M, JENS W, ERAN S, et al. Role of the gut microbiota in nutrition and health[J]. BMJ,2018,361(1):36−44.
    [13]
    NIE P, LI Z, WANG Y, et al. Gut microbiome interventions in human health and diseases[J]. Medicinal Research Reviews,2019,39(6):1−28.
    [14]
    DAPHNA R, OMER W, ELAD B, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature,2018,555(7695):210−215. doi: 10.1038/nature25973
    [15]
    KWOK LAI-YU, ZHANG J C, GUO Z, et al. Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction[J]. PLoS One,2014,9(4):e93631. doi: 10.1371/journal.pone.0093631
    [16]
    CAO Y, LIU H, QIN N, et al. Impact of food additives on the composition and function of gut microbiota: A review[J]. Trends in Food Science & Technology,2020,99(4):295−310.
    [17]
    ZHANG W, JIAO L F, LIU R X, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice[J]. PLoS One,2018,13(9):e0203701. doi: 10.1371/journal.pone.0203701
    [18]
    MAZEL F. Living the high life: Could gut microbiota matter for adaptation to high altitude?[J]. Molecular Ecology,2019,28(9):2119−2121. doi: 10.1111/mec.15093
    [19]
    韩天雨, 胡扬, 张玮佳, 等. 高原训练中运动员腹泻发生状况及肠道菌群的变化[J]. 现代生物医学进展,2018,18(10):1909−1915. [HAN T Y, HU Y, ZHANG W J, et al. Athletes' diarrhea occurrence and changes of intestinal microbial flora in high altitude gtraining[J]. Progress in Modern Biomedicine,2018,18(10):1909−1915.
    [20]
    YAN M, SHUANG M, LAN C C, et al. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochemical and Biophysical Research Communications,2019,516(1):120−126. doi: 10.1016/j.bbrc.2019.05.085
    [21]
    LI H, LI T T, BEASLEY D E, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota[J]. Frontiers in Microbiology,2016,7(758):1169−1178.
    [22]
    ZHANG Q X, SHANG J C, ZHU D Q, et al. Structural segregation of the gut microbiome between Chinese Han and Tibetan infants[J]. Food Science,2019,40(24):128−135.
    [23]
    LI K, DAN Z, GESANG L, et al. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes[J]. Plos One,2016,11(5):e0155863. doi: 10.1371/journal.pone.0155863
    [24]
    JIA Z L, ZHAO X J, LIU X S, et al. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals[J]. mSystems, 2020, 5(1): e00660.
    [25]
    QUAGLIARIELLO A, PAOLA M D, FANTI S D, et al. Gut microbiota composition in Himalayan and Andean populations and its relationship with diet, lifestyle and adaptation to the high-altitude environment[J]. Journal of Anthropological Sciences,2019,97:189−208.
    [26]
    陈郁, 罗勇军. 肠道菌群调控高原习服适应过程及其机制研究进展[J]. 解放军预防医学杂志,2020,38(4):70−72,76. [CHEN Y, LUO Y J. Research progress on the regulation of intestinal flora on the adaptation process of plateau acclimatization and its mechanism[J]. Journal of Preventive Medicine of Chinese People's Liberation Army,2020,38(4):70−72,76.
    [27]
    LI K, PENG W, ZHOU Y, et al. Host genetic and environmental factors shape the composition and function of gut microbiota in populations living at high altitude[J]. BioMed Research International,2020,2020:1−10.
    [28]
    LI H, LI T T, LI X Z, et al. Gut microbiota in Tibetan herdsmen reflects thedegree of urbanization[J]. Frontiers in Microbiology,2018,9(1745):1−14.
    [29]
    SUN S, LULLA A, SIODA M, et al. Gut microbiota composition and blood pressure[J]. Hypertension,2019,73(5):998−1006. doi: 10.1161/HYPERTENSIONAHA.118.12109
    [30]
    VOORHIES A A, LORENZI H A. The challenge of maintaining a healthy microbiome during long-duration space missions[J]. Frontiers in Astronomy & Space Sciences,2016,3(23):1−7.
    [31]
    ALAUZET C, CUNAT L, WACK M, et al. Hypergravity disrupts murine intestinal microbiota[J]. Scientific Reports,2019,9(1):9410−9422. doi: 10.1038/s41598-019-45153-8
    [32]
    LAUREN E R, STELLA S T, BRAD R W, et al. Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis[J]. PLoS One,2015,10(6):e0125792. doi: 10.1371/journal.pone.0125792
    [33]
    LIU Z Z, LUO G, DU R K, et al. Effects of spaceflight on the composition and function of the human gut microbiota[J]. Gut Microbes,2020,11(4):1−13.
    [34]
    VOORHIES A A, OTT C M, MEHTA S, et al. Study of the impact of long-duration space missions at the international space station on the astronaut microbiome[J]. Scientific Reports,2019,9(1):9911−9928. doi: 10.1038/s41598-019-46303-8
    [35]
    MCCARVILLE J L, CLARKE S T, PADMAJA S, et al. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice[J]. PLoS One,2013,8(7):e68961. doi: 10.1371/journal.pone.0068961
    [36]
    徐绸, 何平, 刘长庭. 空间环境对肠道菌群的影响[J]. 航天医学与医学工程,2016,29(4):297−300. [ XU C, HE P, LIU C T. Effects of space environment on intestinal flora[J]. Space Medicine & Medical Engineering,2016,29(4):297−300.
    [37]
    GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight[J]. Science,2019,364(6436):1−23.
    [38]
    JIANG P, STEFAN J G, GEORGE E C, et al. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight[J]. BioMed Central,2019,7(113):1−18.
    [39]
    JIN M L, ZHANG H, ZHAO K, et al. Responses of intestinal mucosal barrier functions of rats to simulated weightlessness[J]. Frontiers in Physiology,2018,9(729):1−13.
    [40]
    URBANIAK C, REID G. The potential influence of the microbiota and probiotics on women during long spaceflights[J]. Womens Health,2016,12(2):193−198.
    [41]
    O’HALLORAN C L, SILVER M W, COLFORD J M. Acute stress symptoms among US ocean lifeguards[J]. Wilderness & Environmental Medicine,2015,26(3):442−443.
    [42]
    吕伟. 海军长远航官兵肠道菌群多样性研究[D]. 上海: 第二军医大学, 2017.

    LV W. Diversisy of gut flora in navy officers and soldiers involved in long voyage[D]. Shanghai: The Second Military Medical University, 2017.
    [43]
    ZHENG W, ZHANG Z, LIU C, et al. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage[J]. Scientific Reports,2015,5(1):9131−9142. doi: 10.1038/srep09131
    [44]
    YUAN Y, ZHAO G, JI H, et al. Changes in the gut microbiota during and after commercial helium–oxygen saturation diving in China[J]. Occupational and Environmental Medicine,2019,76(11):801−807. doi: 10.1136/oemed-2019-106031
    [45]
    DONJETE S, A MÒNICA, JOHN M S, et al. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces[J]. Frontiers in Immunology,2017,8(838):1−21.
    [46]
    KACZMAREK J L, THOMPSON S V, HOLSCHER H D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health[J]. Nutrition Reviews,2017(9):673−682.
    [47]
    HENRY Y, COLINET H. Microbiota disruption leads to reduced cold tolerance in Drosophila flies[J]. The Science of Nature,2018,105(9-10):59−64. doi: 10.1007/s00114-018-1584-7
    [48]
    BO T B, ZHANG X Y, WEN J, et al. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii)[J]. The ISME Journal,2019,13(12):1−17.
    [49]
    KANAKO Y, TAKAKIYO T, YAMATO S, et al. Short-term follow-up of intestinal flora in radiation-exposed mice[J]. Journal of Radiation Research,2019,60(3):328−332. doi: 10.1093/jrr/rrz002
    [50]
    SAVAGE N. The complex relationship between drugs and the microbiome[J]. Nature,2020,577(7792):S10−S11. doi: 10.1038/d41586-020-00196-0
    [51]
    FRAGIADAKIS G K, WASTYK H C, ROBINSON J L, et al. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight[J]. American Journal of Clinical Nutrition,2020:1−10.
    [52]
    ZMOR A, SUEZ J, ELINAV E. You are what you eat: Diet, health and the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology,2018,16(1):35−56.
    [53]
    XU C L, SUN R, QIAO X J, et al. Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment[J]. World Journal of Gastroenterology,2014,20(16):4662−4674. doi: 10.3748/wjg.v20.i16.4662
    [54]
    HWK A, MSR B. Space food and bacterial infections: Realities of the risk and role of science[J]. Trends in Food Science & Technology,2020,106:275−287.
    [55]
    FRAME L A, ELISE C, JACKSON S A. Current explorations of nutrition and the gut microbiome: A comprehensive evaluation of the review literature[J]. Nutrition Reviews,2020:1−50.
    [56]
    DERRIEN M, VEIGA P. Rethinking diet to aid human-microbe symbiosis[J]. Trends in Microbiology,2016,25(2):110−112.
    [57]
    GOWRI R S, MEENAMBIGAI P, PRABHAVATHI P, et al. Probiotics and its effects on human health-A review[J]. International Journal of Current Microbiology and Applied Sciences,2016,5(4):384−392. doi: 10.20546/ijcmas.2016.504.046
    [58]
    KUNDU P, BLACHER E, ELINAV E, et al. Our gut microbiome: The evolving inner self[J]. Cell,2017,171(7):1481−1493. doi: 10.1016/j.cell.2017.11.024
    [59]
    SANDERS M E, MERENSTEIN D J, REID G, et al. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(Suppl.1):1−12.
  • Cited by

    Periodical cited type(5)

    1. 董洪宇,赵程澄,任战军,谢辉,王淑辉. 基于电子鼻和GC-MS技术探究不同林麝饲料的风味特征. 中国饲料. 2025(01): 117-125 .
    2. 屠大伟,陈小鸿,黄永强,胡霞,王烁超,刘文俊. 基于电子鼻、GC-MS结合感官评价分析丰都麻辣鸡调料风味特征. 食品与发酵工业. 2024(01): 293-301 .
    3. 付劭杰,毕金峰,曹风,刘梦,姜溪雨,陈宇航,陈文艺,刘璇. 非浓缩还原苹果汁贮藏期颗粒稳定性与果胶结构相关性研究. 核农学报. 2024(10): 1941-1950 .
    4. 屠大伟,翁盈秋,李青青,冯露萍,刘文俊. 火锅常用干辣椒品质及挥发性成分研究. 食品工业科技. 2023(16): 358-366 . 本站查看
    5. 张帅,吴水金,林宝妹,李海明,吴妙鸿,戴艺民. 福建6个香牙蕉品种(品系)后熟过程中挥发性风味成分的变化. 中国果树. 2023(11): 61-69+80 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (363) PDF downloads (31) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return