WAN Feng, LI Qingzhou, XIE Bo. Research Progress on the Relationship between Intestinal Flora and Extreme Environment[J]. Science and Technology of Food Industry, 2022, 43(4): 420−427. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020010.
Citation: WAN Feng, LI Qingzhou, XIE Bo. Research Progress on the Relationship between Intestinal Flora and Extreme Environment[J]. Science and Technology of Food Industry, 2022, 43(4): 420−427. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020010.

Research Progress on the Relationship between Intestinal Flora and Extreme Environment

More Information
  • Received Date: February 01, 2021
  • Available Online: December 17, 2021
  • The dynamic balance of intestinal flora is one of the important signs of maintaining human health, and the development of many human diseases have been confirmed to be closely related to intestinal flora disorders. Environment is a crucial factor affecting intestinal flora, which can be further divided into conventional environment and extreme environment, however there are few studies on the interrelationship between the extreme environment and the intestinal flora, which is of great significance for the special crowds who work under special environment. Therefore, this article focuses on extreme environment, exploring the changes of human intestinal flora in the plateau, aerospace, navigation and other environments, as well as the regulation of intestinal flora through dietary intervention, in order to provide references for adapting to extreme environments and improving the health of special populations.
  • [1]
    EISENSTEIN M. The hunt for a healthy microbiome[J]. Nature,2020,577(7792):S6−S8. doi: 10.1038/d41586-020-00193-3
    [2]
    TIGHE S, AFSHINNEKOO E, ROCK T M, et al. Genomic methods and microbiological technologies for profiling novel and extreme environments for the extreme microbiome project (XMP)[J]. Journal of Biomolecular Techniques Jbt,2017,28(1):31−39. doi: 10.7171/jbt.17-2801-004
    [3]
    DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature,2013,505(7484):559−563.
    [4]
    OLIPHANT K, ALLEN-VERCOE E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health[J]. Microbiome,2019,7(1):1−15. doi: 10.1186/s40168-018-0604-3
    [5]
    ASHLEY Y. Delivery of the gut microbiome[J]. Nature Reviews Microbiology,2018,16(9):520−521.
    [6]
    SALAZAR N, VALDÉS-VARELA L, GONZÁLEZ S, et al. Nutrition and the gut microbiome in the elderly[J]. Gut Microbes,2017,8(2):82−97. doi: 10.1080/19490976.2016.1256525
    [7]
    BOUCHIE A. White house unveils national microbiome initiative[J]. Nature Biotechnology,2016,34(6):580.
    [8]
    WU Y B, WAN J W, CHOE U, et al. Interactions between food and gut microbiota: Impact on human health[J]. Annual Review of Food Science and Technology,2019,10(1):389−408. doi: 10.1146/annurev-food-032818-121303
    [9]
    JOHNSON V A. Gut microbiome composition and diversity are related to human personality traits[J]. Human Microbiome Journal,2020,15:1−15.
    [10]
    CAITRÍONA LONG-SMITH, O'RIORDAN K J, CLARKE G, et al. Microbiota-Gut-Brain Axis: New therapeutic opportunities[J]. Annual Review of Pharmacology,2020,60(1):1−26. doi: 10.1146/annurev-pharmtox-082719-110050
    [11]
    ADOLPH T E, GRANDER C, MOSCHEN A R, et al. Liver–Microbiome axis in health and disease[J]. Trends in Immunology,2018,39(9):712−723. doi: 10.1016/j.it.2018.05.002
    [12]
    VALDES A M, JENS W, ERAN S, et al. Role of the gut microbiota in nutrition and health[J]. BMJ,2018,361(1):36−44.
    [13]
    NIE P, LI Z, WANG Y, et al. Gut microbiome interventions in human health and diseases[J]. Medicinal Research Reviews,2019,39(6):1−28.
    [14]
    DAPHNA R, OMER W, ELAD B, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature,2018,555(7695):210−215. doi: 10.1038/nature25973
    [15]
    KWOK LAI-YU, ZHANG J C, GUO Z, et al. Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction[J]. PLoS One,2014,9(4):e93631. doi: 10.1371/journal.pone.0093631
    [16]
    CAO Y, LIU H, QIN N, et al. Impact of food additives on the composition and function of gut microbiota: A review[J]. Trends in Food Science & Technology,2020,99(4):295−310.
    [17]
    ZHANG W, JIAO L F, LIU R X, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice[J]. PLoS One,2018,13(9):e0203701. doi: 10.1371/journal.pone.0203701
    [18]
    MAZEL F. Living the high life: Could gut microbiota matter for adaptation to high altitude?[J]. Molecular Ecology,2019,28(9):2119−2121. doi: 10.1111/mec.15093
    [19]
    韩天雨, 胡扬, 张玮佳, 等. 高原训练中运动员腹泻发生状况及肠道菌群的变化[J]. 现代生物医学进展,2018,18(10):1909−1915. [HAN T Y, HU Y, ZHANG W J, et al. Athletes' diarrhea occurrence and changes of intestinal microbial flora in high altitude gtraining[J]. Progress in Modern Biomedicine,2018,18(10):1909−1915.
    [20]
    YAN M, SHUANG M, LAN C C, et al. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochemical and Biophysical Research Communications,2019,516(1):120−126. doi: 10.1016/j.bbrc.2019.05.085
    [21]
    LI H, LI T T, BEASLEY D E, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota[J]. Frontiers in Microbiology,2016,7(758):1169−1178.
    [22]
    ZHANG Q X, SHANG J C, ZHU D Q, et al. Structural segregation of the gut microbiome between Chinese Han and Tibetan infants[J]. Food Science,2019,40(24):128−135.
    [23]
    LI K, DAN Z, GESANG L, et al. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes[J]. Plos One,2016,11(5):e0155863. doi: 10.1371/journal.pone.0155863
    [24]
    JIA Z L, ZHAO X J, LIU X S, et al. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals[J]. mSystems, 2020, 5(1): e00660.
    [25]
    QUAGLIARIELLO A, PAOLA M D, FANTI S D, et al. Gut microbiota composition in Himalayan and Andean populations and its relationship with diet, lifestyle and adaptation to the high-altitude environment[J]. Journal of Anthropological Sciences,2019,97:189−208.
    [26]
    陈郁, 罗勇军. 肠道菌群调控高原习服适应过程及其机制研究进展[J]. 解放军预防医学杂志,2020,38(4):70−72,76. [CHEN Y, LUO Y J. Research progress on the regulation of intestinal flora on the adaptation process of plateau acclimatization and its mechanism[J]. Journal of Preventive Medicine of Chinese People's Liberation Army,2020,38(4):70−72,76.
    [27]
    LI K, PENG W, ZHOU Y, et al. Host genetic and environmental factors shape the composition and function of gut microbiota in populations living at high altitude[J]. BioMed Research International,2020,2020:1−10.
    [28]
    LI H, LI T T, LI X Z, et al. Gut microbiota in Tibetan herdsmen reflects thedegree of urbanization[J]. Frontiers in Microbiology,2018,9(1745):1−14.
    [29]
    SUN S, LULLA A, SIODA M, et al. Gut microbiota composition and blood pressure[J]. Hypertension,2019,73(5):998−1006. doi: 10.1161/HYPERTENSIONAHA.118.12109
    [30]
    VOORHIES A A, LORENZI H A. The challenge of maintaining a healthy microbiome during long-duration space missions[J]. Frontiers in Astronomy & Space Sciences,2016,3(23):1−7.
    [31]
    ALAUZET C, CUNAT L, WACK M, et al. Hypergravity disrupts murine intestinal microbiota[J]. Scientific Reports,2019,9(1):9410−9422. doi: 10.1038/s41598-019-45153-8
    [32]
    LAUREN E R, STELLA S T, BRAD R W, et al. Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis[J]. PLoS One,2015,10(6):e0125792. doi: 10.1371/journal.pone.0125792
    [33]
    LIU Z Z, LUO G, DU R K, et al. Effects of spaceflight on the composition and function of the human gut microbiota[J]. Gut Microbes,2020,11(4):1−13.
    [34]
    VOORHIES A A, OTT C M, MEHTA S, et al. Study of the impact of long-duration space missions at the international space station on the astronaut microbiome[J]. Scientific Reports,2019,9(1):9911−9928. doi: 10.1038/s41598-019-46303-8
    [35]
    MCCARVILLE J L, CLARKE S T, PADMAJA S, et al. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice[J]. PLoS One,2013,8(7):e68961. doi: 10.1371/journal.pone.0068961
    [36]
    徐绸, 何平, 刘长庭. 空间环境对肠道菌群的影响[J]. 航天医学与医学工程,2016,29(4):297−300. [ XU C, HE P, LIU C T. Effects of space environment on intestinal flora[J]. Space Medicine & Medical Engineering,2016,29(4):297−300.
    [37]
    GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight[J]. Science,2019,364(6436):1−23.
    [38]
    JIANG P, STEFAN J G, GEORGE E C, et al. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight[J]. BioMed Central,2019,7(113):1−18.
    [39]
    JIN M L, ZHANG H, ZHAO K, et al. Responses of intestinal mucosal barrier functions of rats to simulated weightlessness[J]. Frontiers in Physiology,2018,9(729):1−13.
    [40]
    URBANIAK C, REID G. The potential influence of the microbiota and probiotics on women during long spaceflights[J]. Womens Health,2016,12(2):193−198.
    [41]
    O’HALLORAN C L, SILVER M W, COLFORD J M. Acute stress symptoms among US ocean lifeguards[J]. Wilderness & Environmental Medicine,2015,26(3):442−443.
    [42]
    吕伟. 海军长远航官兵肠道菌群多样性研究[D]. 上海: 第二军医大学, 2017.

    LV W. Diversisy of gut flora in navy officers and soldiers involved in long voyage[D]. Shanghai: The Second Military Medical University, 2017.
    [43]
    ZHENG W, ZHANG Z, LIU C, et al. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage[J]. Scientific Reports,2015,5(1):9131−9142. doi: 10.1038/srep09131
    [44]
    YUAN Y, ZHAO G, JI H, et al. Changes in the gut microbiota during and after commercial helium–oxygen saturation diving in China[J]. Occupational and Environmental Medicine,2019,76(11):801−807. doi: 10.1136/oemed-2019-106031
    [45]
    DONJETE S, A MÒNICA, JOHN M S, et al. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces[J]. Frontiers in Immunology,2017,8(838):1−21.
    [46]
    KACZMAREK J L, THOMPSON S V, HOLSCHER H D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health[J]. Nutrition Reviews,2017(9):673−682.
    [47]
    HENRY Y, COLINET H. Microbiota disruption leads to reduced cold tolerance in Drosophila flies[J]. The Science of Nature,2018,105(9-10):59−64. doi: 10.1007/s00114-018-1584-7
    [48]
    BO T B, ZHANG X Y, WEN J, et al. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii)[J]. The ISME Journal,2019,13(12):1−17.
    [49]
    KANAKO Y, TAKAKIYO T, YAMATO S, et al. Short-term follow-up of intestinal flora in radiation-exposed mice[J]. Journal of Radiation Research,2019,60(3):328−332. doi: 10.1093/jrr/rrz002
    [50]
    SAVAGE N. The complex relationship between drugs and the microbiome[J]. Nature,2020,577(7792):S10−S11. doi: 10.1038/d41586-020-00196-0
    [51]
    FRAGIADAKIS G K, WASTYK H C, ROBINSON J L, et al. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight[J]. American Journal of Clinical Nutrition,2020:1−10.
    [52]
    ZMOR A, SUEZ J, ELINAV E. You are what you eat: Diet, health and the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology,2018,16(1):35−56.
    [53]
    XU C L, SUN R, QIAO X J, et al. Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment[J]. World Journal of Gastroenterology,2014,20(16):4662−4674. doi: 10.3748/wjg.v20.i16.4662
    [54]
    HWK A, MSR B. Space food and bacterial infections: Realities of the risk and role of science[J]. Trends in Food Science & Technology,2020,106:275−287.
    [55]
    FRAME L A, ELISE C, JACKSON S A. Current explorations of nutrition and the gut microbiome: A comprehensive evaluation of the review literature[J]. Nutrition Reviews,2020:1−50.
    [56]
    DERRIEN M, VEIGA P. Rethinking diet to aid human-microbe symbiosis[J]. Trends in Microbiology,2016,25(2):110−112.
    [57]
    GOWRI R S, MEENAMBIGAI P, PRABHAVATHI P, et al. Probiotics and its effects on human health-A review[J]. International Journal of Current Microbiology and Applied Sciences,2016,5(4):384−392. doi: 10.20546/ijcmas.2016.504.046
    [58]
    KUNDU P, BLACHER E, ELINAV E, et al. Our gut microbiome: The evolving inner self[J]. Cell,2017,171(7):1481−1493. doi: 10.1016/j.cell.2017.11.024
    [59]
    SANDERS M E, MERENSTEIN D J, REID G, et al. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(Suppl.1):1−12.
  • Related Articles

    [1]BAI Xixi, HAN Chenggang, XU Ying, HAN Jingsong, CAO Chongjiang, CHENG Shujie. Research Progress of Dietary Intervention Strategies for Irritable Bowel Syndrome[J]. Science and Technology of Food Industry, 2022, 43(16): 421-431. DOI: 10.13386/j.issn1002-0306.2021080007
    [2]ZHAO Tong, WANG Xuan, WU Liming, YAN Sha, LU Huanxian, ZHAO Hongmu, XUE Xiaofeng. Research Progress of Fermented Bee-products[J]. Science and Technology of Food Industry, 2022, 43(14): 461-466. DOI: 10.13386/j.issn1002-0306.2021070251
    [3]WU Hong-yan, PENG Cheng-jun, DENG Hou-qin. Research Progress on Chemical Component of Eucommia Folium[J]. Science and Technology of Food Industry, 2019, 40(17): 360-364. DOI: 10.13386/j.issn1002-0306.2019.17.059
    [4]WANG Zi-xuan, XIE Jing, XUE Bin, SHAO Ze-huai, GAN Jian-hong, SUN Tao. Research Progress of Chitosan Food Packaging Film[J]. Science and Technology of Food Industry, 2019, 40(6): 303-307,311. DOI: 10.13386/j.issn1002-0306.2019.06.052
    [5]FANG Fang, WANG Feng-zhong. Research progress on the detection methods of flavonols in plants[J]. Science and Technology of Food Industry, 2018, 39(11): 327-332. DOI: 10.13386/j.issn1002-0306.2018.11.056
    [6]ZHAO Jing, GANG Jie. Research progress in bioaccumulation of trace elements in edible fungus[J]. Science and Technology of Food Industry, 2015, (17): 396-399. DOI: 10.13386/j.issn1002-0306.2015.17.074
    [7]ZHANG Ming- liang, JIANG Xian- zhang, WANG Can, HUANG Jian- zhong. Research progress in DHA production by microbes[J]. Science and Technology of Food Industry, 2014, (21): 395-400. DOI: 10.13386/j.issn1002-0306.2014.21.077
    [8]GAO Jian, MA Lu-shan, HU Jian-jun, FAN Tie-zhen, LIU Guo-ji. Research progress in the extraction method of pectin[J]. Science and Technology of Food Industry, 2014, (06): 368-372. DOI: 10.13386/j.issn1002-0306.2014.06.062
    [9]ZHANG Ke-ping, JIA Juan-juan, WU Jin-feng. Research progress in the mechanical properties of cereal[J]. Science and Technology of Food Industry, 2014, (02): 369-374. DOI: 10.13386/j.issn1002-0306.2014.02.066
    [10]YANG Ying, HUANG Li-jie. Research progress in preparation and application of modified starch[J]. Science and Technology of Food Industry, 2013, (20): 381-385. DOI: 10.13386/j.issn1002-0306.2013.20.086
  • Cited by

    Periodical cited type(26)

    1. 周新雨,王子欢,杨小平,王志新,贾利蓉,段飞霞. 天然着色剂与抗氧化剂对~(60)Co-γ射线辐照辣椒红油的协同护色作用研究. 中国调味品. 2025(01): 68-77 .
    2. 陈宇佳,邓朝军,张婷婷,王秀平,陈秀萍,赵加宁,马翠兰,蒋际谋. 基于图像识别的枇杷资源果肉褐变鉴定方法研究与应用. 果树学报. 2025(02): 288-299 .
    3. 张康逸,温青玉,刘燕,耿宁宁,张嫚,何梦影. 一种植物蛋白复合肽盐的工艺研究. 中国调味品. 2024(03): 137-144 .
    4. 张洪交,张存喜,王瑞,王可,乔倩. 基于图像处理和改进DenseNet网络的小黄鱼新鲜度识别. 南方水产科学. 2024(03): 133-142 .
    5. 唐一诺,章肖肖,宋文文,宋盈萱,高露,陈晓乐,郑振佳. 胭脂虫红色素口红制备工艺优化及品质分析. 中国食品添加剂. 2024(08): 139-147 .
    6. 刘恒言,陈秀金,臧鹏,董海胜,孙京超,赵伟,白玉冰,徐楠,张龙振,王雪晴,杜秉健,王耀,李兆周. 面包的品质变化及改良的研究进展. 食品与发酵工业. 2024(17): 394-404 .
    7. 骆冬莹,孙蕾,孙金威,梁文星,王苏宁,赵广生. 纳滤与闪蒸技术对新鲜牛乳浓缩效果的影响. 中国乳品工业. 2024(09): 75-80 .
    8. 杨芳,王逊城,贾洪锋,许程剑,袁海彬. 基于GC-IMS结合多元统计方法对不同品种植物油制备的辣椒油风味品质的比较. 现代食品科技. 2024(10): 338-350 .
    9. 鲍雨婷,陈琪,王灼琛. 低温油炸黄茶风味小麦脆片加工工艺优化及品质分析. 中国食品学报. 2024(11): 254-268 .
    10. 张莉,季国志,母智深. 不同豆类蛋白粉的属性和营养消化特性研究. 粮食与饲料工业. 2024(06): 19-23 .
    11. 董阳阳,阿衣古丽·阿力木,阿依古扎尔·木合塔尔江,冯作山. 响应面优化真空包装羊肉块加工工艺. 中国调味品. 2023(01): 128-133 .
    12. 冯子健,陈南,高浩祥,何强,曾维才. 茶多酚对酸奶发酵品质及抗氧化活性的影响. 食品工业科技. 2023(02): 143-151 . 本站查看
    13. 邬帅帆. 食品镀铝包装的阻光性能评价. 现代食品. 2023(05): 189-192 .
    14. 罗丽,付院生,陈万林,聂益晗,赵亚茹,王顺民. 鲜切莲藕超声-热处理护色工艺优化. 中国果菜. 2023(05): 17-21+28 .
    15. 黄昊,林韡,杨强,童国强,胡志平,陈双,徐岩. 陈酿白酒中黄色呈色强度快速表征方法的研究. 食品与发酵工业. 2023(10): 245-250 .
    16. 周弦,许蓉蓉,庄全典,高梦祥,江洪波. 生姜柠檬软糖的工艺优化. 食品工业. 2023(05): 91-95 .
    17. 唐悦,杨旭. 食品的视觉效果对消费者感知及购买行为影响研究. 现代商业. 2023(10): 3-6 .
    18. 孙雯,阎佳楠,来斌,王策,吴海涛. 负载褪黑素和枸杞粉的凝胶糖果的研制及特性研究. 食品工业科技. 2023(22): 201-209 . 本站查看
    19. 王博,胡晓妍,于芳珠,刘登勇. 基于机器视觉技术制作烤羊肉比色卡. 食品工业科技. 2022(03): 10-17 . 本站查看
    20. 巩雪. 超高压作用下扇贝闭壳肌色差变化探析. 包装学报. 2022(01): 70-80 .
    21. 魏甜甜,魏勃,王承,李凯,谢彩锋,杭方学. 黄冰糖低温浸渍茉莉花制备风味糖浆工艺优化. 食品工业科技. 2022(12): 181-187 . 本站查看
    22. 郭超男,年国芳,徐建宗,周建中. 25种新疆主栽辣椒品种品质分析. 食品安全质量检测学报. 2022(12): 4051-4058 .
    23. 邓家棋,陈嘉澍,黄桂颖,冯卫华,雷梦琳,白卫东,安可靖,余元善,王辉,戴卓文,杨启财,杨婉媛. 基于感官喜爱度排序的广式佛手柑凉果的品质分析. 农产品加工. 2022(12): 82-87 .
    24. 陈茜,张雪春,王振兴,何雪梅,孙健. 不同加工方式对香蕉片品质的影响. 南方农业学报. 2022(05): 1305-1315 .
    25. 吴昕怡,田浩,牛之瑞,桂敏,潘俊,王瀚墨,周继伟,朱志妍,刘秀嶶. 基于熵权的TOPSIS和聚类分析评价方法的发酵辣椒品种适用性研究. 食品安全质量检测学报. 2022(22): 7314-7322 .
    26. 张衍旭,邱智东,高英鑫,王野谌,董雪莲. 基于色差原理及指纹图谱对淡竹叶药材质量评价研究. 时珍国医国药. 2022(12): 3057-3061 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (362) PDF downloads (30) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return