Citation: | LIU Jia, XIA Yongjun, XIONG Zhiqiang, et al. Research Progress of Probiotics in Alleviating Type 2 Diabetes Mellitus[J]. Science and Technology of Food Industry, 2022, 43(1): 466−471. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010167. |
[1] |
POUYA S, INGA P, PARASKEVI S, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Research and Clinical Practice,2019(157):1−10.
|
[2] |
CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018(138):271−281.
|
[3] |
American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care,2010,33(1):62−69.
|
[4] |
LI B Y, XU X Y, GAN R Y, et al. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products[J]. Foods,2019,440(8):1−10.
|
[5] |
LUTFIYE Y E, TULAY O, ARZU A B. Assessment of socio-demographic factors, health status and the knowledge on probiotic dairy products[J]. Food Science and Human Wellness,2020:1−8.
|
[6] |
李洪梅. α-葡萄糖苷酶抑制剂的临床应用[J]. 中国医刊,2007,42(10):19−21. [LI H M. Clinical application of α-glucosidaseinhibitor[J]. Chinese Journal of Medicine,2007,42(10):19−21. doi: 10.3969/j.issn.1008-1070.2007.10.008
|
[7] |
顾觉奋, 陈紫娟. Α-葡萄糖苷酶抑制剂的研究及应用[J]. 药学进展,2009,33(2):62−67. [GU J F, CHEN Z J. The studies and applications of α-glucosidase inhibitors[J]. Progress in Pharmaceutical Sciences,2009,33(2):62−67. doi: 10.3969/j.issn.1001-5094.2009.02.003
|
[8] |
张群子, 范瑛, 汪年松. 二肽基肽酶4抑制剂在糖尿病肾病患者中的应用和疗效评价[J]. 世界临床药物,2020,41(10):758−763. [ZHANG Q Z, FAN Y, WANG N S. Application and efficacy evaluation of dipeptidyl peptidase 4 inhibitor inpatients with diabetic nephropathy[J]. World Clinical Drugs,2020,41(10):758−763.
|
[9] |
陈卓, 张庆文. DPP-4抑制剂研究进展[J]. 上海医药,2013,34(7):50−54. [CHEN Z, ZHANG Q W. Research progress in dipeptidyl peptidase-4 inhibitors[J]. Shanghai Medical & Pharmaceutical Journal,2013,34(7):50−54. doi: 10.3969/j.issn.1006-1533.2013.07.018
|
[10] |
ZENG Z, LUO J Y, ZUO F L, et al. Screening for potential novel probioticLactobacillus strains based on high dipeptidyl peptidase IV and α-glucosidase inhibitory activity[J]. Journal of Functional Foods,2016(20):486−495.
|
[11] |
陈佩, 党辉, 张秋香, 等. 1株具有潜在降糖作用的益生菌的筛选[J]. 中国食品学报,2014,14(11):27−33. [CHEN P, DANG H, ZHANG Q X, et al. Screening of a probiotic with potential hypoglycemic effect[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(11):27−33.
|
[12] |
闫芬芬, 史佳鹭, 李娜, 等. 具有α-葡萄糖苷酶和二肽基肽酶IV抑制作用降糖益生菌的筛选[J]. 食品科学,2019,40(20):152−158. [YAN F F, SHI J L, LI N, et al. Screening for potential novel probiotic lactobacillus strains with high dipeptidyl peptidase IV and α-glucosidase inhibitory activity[J]. Food Science,2019,40(20):152−158. doi: 10.7506/spkx1002-6630-20181106-069
|
[13] |
YUTAKA S, KISHIO N, NAOKO T, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus[J]. Journal of Diabetes Investigation,2010,1(5):212−228. doi: 10.1111/j.2040-1124.2010.00074.x
|
[14] |
MIGUEL A, ERIKA S, SARA W. Optimized fasting and OGTT-based simple surrogatemethods for assessing insulin sensitivity[J]. Diabetes & Metabolic Syndrome:Clinical Research & Reviews,2019(13):2683−2687.
|
[15] |
AUNE D, SCHLESINGER S, NEUENSCHWANDER M, et al. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies[J]. Nutrition, Metabolism & Cardiovascular Diseases,2018(28):1081−1091.
|
[16] |
LI J Y, YOU Z, WANG Q, et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future[J]. Microbes and Infection,2020(22):80−85.
|
[17] |
CHEN P, ZHANG Q X, DANG H, et al. Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice[J]. Journal of Functional Foods,2014(10):318−326.
|
[18] |
SHAUN S, AYAH A M, NASSER M A D, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial[J]. Clinical Nutrition,2019(38):1561−1569.
|
[19] |
NÉSTOR C, CARLOS B, FACUNDO R A, et al. Two cases of type 2 diabetes mellitus successfully treated with probiotics[J]. Clinical Case Reports,2020(8):3119−3124.
|
[20] |
白璐, 张喆, 梁曦, 等. 益生菌对2型糖尿病小鼠的调节作用[J]. 食品工业科技,2020,41(19):339−346. [BAI L, ZHANG J, LIANG X, et al. Administration of probiotics on type 2 diabetes mice[J]. Science and Technology of Food Industry,2020,41(19):339−346.
|
[21] |
ZENG Z, YUAN Q P, YU R, et al. Ameliorative effects of probiotic lactobacillus paracasei NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a type 2 diabetes mellitus rat model[J]. Molecular Nutrition Food Research,2019:1−9.
|
[22] |
ZHANG J L, WANG S B, ZENG Z, et al. Anti-diabetic effects of bifidobacteriumanimalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model[J]. Journal of Functional Foods,2020(67):1−10.
|
[23] |
SZU C H, WEI T T, TZU M P. Lactobacillus paracasei subsp. paracasei NTU 101 ameliorates impaired glucose tolerance induced by a high-fat, high-fructose diet in Sprague-Dawleyrats[J]. Journal of Functional Foods,2014(24):472−481.
|
[24] |
LI K K, TIAN P J, WANG S D, et al. Targeting gut microbiota: Lactobacillus alleviated type 2 diabetes via inhibiting LPS secretion and activating GPR43 pathway[J]. Journal of Functional Foods,2017(38):561−570.
|
[25] |
SU M L, JIN J J, KYUNG H W, et al. Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression[J]. Nutrition Research,2016(36):337−348.
|
[26] |
CHEN P, ZHANG Q X, DANG H, et al. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin[J]. Nutrition,2014(30):1061−1068.
|
[27] |
MING C H, WAN H T, YU P J, et al. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: A randomized, double-blinded, placebo-controlled trial[J]. Scientific Reports,2018(8):1−11.
|
[28] |
LI C, DING Q, NIE S P, et al. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats[J]. Journal of Agricultural and Food Chemistry,2014,62:11884−11891. doi: 10.1021/jf503681r
|
[29] |
MA Q T, LI Y Q, LI P F, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]. Biomedicine & Pharmacotherapy,2019(117):1−11.
|
[30] |
FATEMEH NM, MANSOUR S, MOHAMMAD E K, et al. The association of type II diabetes with gut microbiotacomposition[J]. Microbial Pathogenesis,2017(110):630−636.
|
[31] |
NADJA L, FINN K V, FRANS W J, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. Plos One,2010,5(2):1−10.
|
[32] |
王艳明, 妮尕热·阿布都外力, 迪娜热尔·迪力达西, 等. 驼乳源益生菌对db/db鼠肠道菌群的调节作用[J]. 中国微生态学杂志,2019,31(12):1365−1371. [WANG Y M, NIGARE·A B D W L, DINAREER·D L D X, et al. Effects of composite probiotics isolated from fermented camel milk on intestinal microbiota in db/db diabetic mice[J]. Chinese Journal of Microecology,2019,31(12):1365−1371.
|
[33] |
张海平, 李微, 李瑞英, 等. 益生菌发酵乳对糖尿病大鼠血糖水平和肠道菌群的影响[J]. 营养学报,2018,40(5):454−458. [ZHANG H P, LI W, LI R Y, et al. Effects of probiotic fermented milk on blood glucose levels andintestinal microbiota in diabetic rats[J]. Acta Nutrimenta Sinica,2018,40(5):454−458. doi: 10.3969/j.issn.0512-7955.2018.05.009
|
[34] |
PATRICE D C, JACQUES A, MIGUEL A I, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes,2007,56:1761−1772. doi: 10.2337/db06-1491
|
[35] |
NATHALIA G C, LIRLANDIA P S, MARINEZ O S, et al. The linkage between inflammation and type 2 diabetes mellitus[J]. Diabetes Research and Clinical Practice,2013(99):85−92.
|
[36] |
卢彩霞. 2型糖尿病患者内分泌有关指标的紊乱及临床意义研究[J]. 当代医学,2021,27(1):180−181. [LU C X. Study on the disturbance and clinical significance of endocrine related indexes in type 2 diabetes[J]. Contemporary Medicine,2021,27(1):180−181. doi: 10.3969/j.issn.1009-4393.2021.01.077
|
[37] |
王全伟, 凡文博, 王智昊, 等. 氧化应激与心血管疾病关系的研究进展[J]. 中国老年学杂志,2014,34(1):270−273. [WANG Q W, FAN W B, WANG Z H, Et al. Research progress on the relationship between oxidative stress and cardiovascular diseases[J]. Chinese Journal of Gerontology,2014,34(1):270−273. doi: 10.3969/j.issn.1005-9202.2014.01.137
|
[38] |
付建芳, 姬秋和, 张锐, 等. 2型糖尿病患者血糖和氧化应激水平相关性研究[J]. 实用预防医学,2011,18(4):604−605. [FU J F, JI Q H, ZHANG R, et al. Study on correlation between plasma glucose and oxidative stress in patients with type 2 diabetes mellitus[J]. Practical Preventive Medicine,2011,18(4):604−605. doi: 10.3969/j.issn.1006-3110.2011.04.008
|
[39] |
VIJENDRA M, CHANDNI S, NARENDRA M, et al. Probiotics as potential antioxidants: A systematic review[J]. Journal of Agricultural and Food Chemistry,2015(63):3615−3626.
|
[40] |
ZHENG H J, GUO J, QI J, et al. The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: A systematic review and meta-analysis of randomized controlled trials[J]. Pharmacological Research,2019:1−36.
|
[41] |
DIPEEKA K M, SRIRAM S. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes[J]. Pancreatology,2019:1−11.
|
[42] |
MYUNG H K, SEUNG G K, JEONG H P, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology,2013:1−27.
|
[43] |
李琳琳, 杨浩, 王烨. 肠道菌群代谢产物短链脂肪酸与2型糖尿病的关系[J]. 新疆医科大学学报,2017,40(12):1517−1521. [LI L L, YANG H, WANG Y. The relationship between short-chain fatty acids, metabolites of intestinal flora and type 2 diabetes[J]. Journal of Xinjiang Medical University,2017,40(12):1517−1521. doi: 10.3969/j.issn.1009-5551.2017.12.004
|
[44] |
潘虹, 王俏梅. 高脂膳食所致大鼠高血糖及其与肠道菌群、代谢产物的相关性实验研究[J]. 药物分析杂志,2019,39(2):280−285. [PAN H, WANG Q M. Experimental study on hyperglycemia induced by high-fatdiet in rats and its correlation with intestinal flora and metabolites[J]. Chin J Pharm Anal,2019,39(2):280−285.
|
[45] |
朱晓振, 张菡菡, 孟现尧, 等. 短链脂肪酸改善 2 型糖尿病小鼠胰岛素抵抗和胰腺损伤[J]. 现代食品科技,2020,36(8):1−7. [ZHU X Z, ZHANG H H, MENG X Y, et al. Short-chain fatty acids reduced insulin resistance and pancreatic damage in type 2 diabetic mice[J]. Modern Food Science and Technology,2020,36(8):1−7.
|
[46] |
许女, 郭宏萍, 杨光, 等. 山西老陈醋源植物乳杆菌173对II型糖尿病大鼠的降血糖机制[J/OL]. 中国食品学报. 2020: 1−14. https://kns.cnki.net/kcms/detail/11.4528.TS.20201119.0957.002.html.
XU N, GUO H P, YANG G, et al. Hypoglycemic mechanism of Lactobacillus plantarum 173 isolated from Shanxi aged vinegar on type II diabetes rats[J]. Journal of Chinese Institute of Food Science and Technology, 2020: 1−4. https://kns.cnki.net/kcms/detail/11.4528.TS.20201119.0957.002.html.
|
[47] |
胡红莲, 高民. 肠道屏障功能及其评价指标的研究进展[J]. 中国畜牧杂志,2012,48(17):78−82. [HU H L, GAO M. Research progress of intestinal barrier function and its evaluation index[J]. Chinese Journal of Animal Husbandry,2012,48(17):78−82. doi: 10.3969/j.issn.0258-7033.2012.17.021
|
[48] |
朱宗涛, 韩冰, 万峰, 等. 益生菌对糖尿病干预作用的研究进展[J]. 食品工业科技,2017,38(21):321−324, 330. [ZHU Z T, HAN B, WAN F, et al. Research progress on the interventional effects of probiotics on diabetes[J]. Science and Technology of Food Industry,2017,38(21):321−324, 330.
|
[49] |
HORTON F, WRIGHT J, SMITH L, et al. Increased intestinal permeability to oral chromium (51 Cr)-EDTA in human type 2 diabetes[J]. Diabetic Medicine,2013,31(5):559−563.
|