LIU Jia, XIA Yongjun, XIONG Zhiqiang, et al. Research Progress of Probiotics in Alleviating Type 2 Diabetes Mellitus[J]. Science and Technology of Food Industry, 2022, 43(1): 466−471. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010167.
Citation: LIU Jia, XIA Yongjun, XIONG Zhiqiang, et al. Research Progress of Probiotics in Alleviating Type 2 Diabetes Mellitus[J]. Science and Technology of Food Industry, 2022, 43(1): 466−471. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010167.

Research Progress of Probiotics in Alleviating Type 2 Diabetes Mellitus

More Information
  • Received Date: January 20, 2021
  • Available Online: November 22, 2021
  • Diabetes is a chronic metabolic disease caused by multiple factors, and it is an epidemic worldwide in the 21st century. The intestinal flora of diabetic patients is imbalanced, with reduced antioxidant capacity and low-grade inflammation. Relevant studies have shown that probiotics, as a kind of living microorganisms that are beneficial to the health of the intestine, can relieve the symptoms of diabetes by balancing the intestinal flora, reducing the body's oxidative damage and regulating the body's immune factors. This article combs the two commonly used methods for screening hypoglycemic strains with α-glucosidase and DPP-IV as targets, and evaluates the hypoglycemic effect of probiotics through in vivo experiments. At the same time, it further summarizes the mechanism of probiotics in alleviating type 2 diabetes from five aspects such as intestinal flora, immune response, oxidative stress, short-chain fatty acids and intestinal barrier, in order to provide a certain reference for related research on type 2 diabetes.
  • [1]
    POUYA S, INGA P, PARASKEVI S, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Research and Clinical Practice,2019(157):1−10.
    [2]
    CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018(138):271−281.
    [3]
    American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care,2010,33(1):62−69.
    [4]
    LI B Y, XU X Y, GAN R Y, et al. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products[J]. Foods,2019,440(8):1−10.
    [5]
    LUTFIYE Y E, TULAY O, ARZU A B. Assessment of socio-demographic factors, health status and the knowledge on probiotic dairy products[J]. Food Science and Human Wellness,2020:1−8.
    [6]
    李洪梅. α-葡萄糖苷酶抑制剂的临床应用[J]. 中国医刊,2007,42(10):19−21. [LI H M. Clinical application of α-glucosidaseinhibitor[J]. Chinese Journal of Medicine,2007,42(10):19−21. doi: 10.3969/j.issn.1008-1070.2007.10.008
    [7]
    顾觉奋, 陈紫娟. Α-葡萄糖苷酶抑制剂的研究及应用[J]. 药学进展,2009,33(2):62−67. [GU J F, CHEN Z J. The studies and applications of α-glucosidase inhibitors[J]. Progress in Pharmaceutical Sciences,2009,33(2):62−67. doi: 10.3969/j.issn.1001-5094.2009.02.003
    [8]
    张群子, 范瑛, 汪年松. 二肽基肽酶4抑制剂在糖尿病肾病患者中的应用和疗效评价[J]. 世界临床药物,2020,41(10):758−763. [ZHANG Q Z, FAN Y, WANG N S. Application and efficacy evaluation of dipeptidyl peptidase 4 inhibitor inpatients with diabetic nephropathy[J]. World Clinical Drugs,2020,41(10):758−763.
    [9]
    陈卓, 张庆文. DPP-4抑制剂研究进展[J]. 上海医药,2013,34(7):50−54. [CHEN Z, ZHANG Q W. Research progress in dipeptidyl peptidase-4 inhibitors[J]. Shanghai Medical & Pharmaceutical Journal,2013,34(7):50−54. doi: 10.3969/j.issn.1006-1533.2013.07.018
    [10]
    ZENG Z, LUO J Y, ZUO F L, et al. Screening for potential novel probioticLactobacillus strains based on high dipeptidyl peptidase IV and α-glucosidase inhibitory activity[J]. Journal of Functional Foods,2016(20):486−495.
    [11]
    陈佩, 党辉, 张秋香, 等. 1株具有潜在降糖作用的益生菌的筛选[J]. 中国食品学报,2014,14(11):27−33. [CHEN P, DANG H, ZHANG Q X, et al. Screening of a probiotic with potential hypoglycemic effect[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(11):27−33.
    [12]
    闫芬芬, 史佳鹭, 李娜, 等. 具有α-葡萄糖苷酶和二肽基肽酶IV抑制作用降糖益生菌的筛选[J]. 食品科学,2019,40(20):152−158. [YAN F F, SHI J L, LI N, et al. Screening for potential novel probiotic lactobacillus strains with high dipeptidyl peptidase IV and α-glucosidase inhibitory activity[J]. Food Science,2019,40(20):152−158. doi: 10.7506/spkx1002-6630-20181106-069
    [13]
    YUTAKA S, KISHIO N, NAOKO T, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus[J]. Journal of Diabetes Investigation,2010,1(5):212−228. doi: 10.1111/j.2040-1124.2010.00074.x
    [14]
    MIGUEL A, ERIKA S, SARA W. Optimized fasting and OGTT-based simple surrogatemethods for assessing insulin sensitivity[J]. Diabetes & Metabolic Syndrome:Clinical Research & Reviews,2019(13):2683−2687.
    [15]
    AUNE D, SCHLESINGER S, NEUENSCHWANDER M, et al. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies[J]. Nutrition, Metabolism & Cardiovascular Diseases,2018(28):1081−1091.
    [16]
    LI J Y, YOU Z, WANG Q, et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future[J]. Microbes and Infection,2020(22):80−85.
    [17]
    CHEN P, ZHANG Q X, DANG H, et al. Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice[J]. Journal of Functional Foods,2014(10):318−326.
    [18]
    SHAUN S, AYAH A M, NASSER M A D, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial[J]. Clinical Nutrition,2019(38):1561−1569.
    [19]
    NÉSTOR C, CARLOS B, FACUNDO R A, et al. Two cases of type 2 diabetes mellitus successfully treated with probiotics[J]. Clinical Case Reports,2020(8):3119−3124.
    [20]
    白璐, 张喆, 梁曦, 等. 益生菌对2型糖尿病小鼠的调节作用[J]. 食品工业科技,2020,41(19):339−346. [BAI L, ZHANG J, LIANG X, et al. Administration of probiotics on type 2 diabetes mice[J]. Science and Technology of Food Industry,2020,41(19):339−346.
    [21]
    ZENG Z, YUAN Q P, YU R, et al. Ameliorative effects of probiotic lactobacillus paracasei NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a type 2 diabetes mellitus rat model[J]. Molecular Nutrition Food Research,2019:1−9.
    [22]
    ZHANG J L, WANG S B, ZENG Z, et al. Anti-diabetic effects of bifidobacteriumanimalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model[J]. Journal of Functional Foods,2020(67):1−10.
    [23]
    SZU C H, WEI T T, TZU M P. Lactobacillus paracasei subsp. paracasei NTU 101 ameliorates impaired glucose tolerance induced by a high-fat, high-fructose diet in Sprague-Dawleyrats[J]. Journal of Functional Foods,2014(24):472−481.
    [24]
    LI K K, TIAN P J, WANG S D, et al. Targeting gut microbiota: Lactobacillus alleviated type 2 diabetes via inhibiting LPS secretion and activating GPR43 pathway[J]. Journal of Functional Foods,2017(38):561−570.
    [25]
    SU M L, JIN J J, KYUNG H W, et al. Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression[J]. Nutrition Research,2016(36):337−348.
    [26]
    CHEN P, ZHANG Q X, DANG H, et al. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin[J]. Nutrition,2014(30):1061−1068.
    [27]
    MING C H, WAN H T, YU P J, et al. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: A randomized, double-blinded, placebo-controlled trial[J]. Scientific Reports,2018(8):1−11.
    [28]
    LI C, DING Q, NIE S P, et al. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats[J]. Journal of Agricultural and Food Chemistry,2014,62:11884−11891. doi: 10.1021/jf503681r
    [29]
    MA Q T, LI Y Q, LI P F, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]. Biomedicine & Pharmacotherapy,2019(117):1−11.
    [30]
    FATEMEH NM, MANSOUR S, MOHAMMAD E K, et al. The association of type II diabetes with gut microbiotacomposition[J]. Microbial Pathogenesis,2017(110):630−636.
    [31]
    NADJA L, FINN K V, FRANS W J, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. Plos One,2010,5(2):1−10.
    [32]
    王艳明, 妮尕热·阿布都外力, 迪娜热尔·迪力达西, 等. 驼乳源益生菌对db/db鼠肠道菌群的调节作用[J]. 中国微生态学杂志,2019,31(12):1365−1371. [WANG Y M, NIGARE·A B D W L, DINAREER·D L D X, et al. Effects of composite probiotics isolated from fermented camel milk on intestinal microbiota in db/db diabetic mice[J]. Chinese Journal of Microecology,2019,31(12):1365−1371.
    [33]
    张海平, 李微, 李瑞英, 等. 益生菌发酵乳对糖尿病大鼠血糖水平和肠道菌群的影响[J]. 营养学报,2018,40(5):454−458. [ZHANG H P, LI W, LI R Y, et al. Effects of probiotic fermented milk on blood glucose levels andintestinal microbiota in diabetic rats[J]. Acta Nutrimenta Sinica,2018,40(5):454−458. doi: 10.3969/j.issn.0512-7955.2018.05.009
    [34]
    PATRICE D C, JACQUES A, MIGUEL A I, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes,2007,56:1761−1772. doi: 10.2337/db06-1491
    [35]
    NATHALIA G C, LIRLANDIA P S, MARINEZ O S, et al. The linkage between inflammation and type 2 diabetes mellitus[J]. Diabetes Research and Clinical Practice,2013(99):85−92.
    [36]
    卢彩霞. 2型糖尿病患者内分泌有关指标的紊乱及临床意义研究[J]. 当代医学,2021,27(1):180−181. [LU C X. Study on the disturbance and clinical significance of endocrine related indexes in type 2 diabetes[J]. Contemporary Medicine,2021,27(1):180−181. doi: 10.3969/j.issn.1009-4393.2021.01.077
    [37]
    王全伟, 凡文博, 王智昊, 等. 氧化应激与心血管疾病关系的研究进展[J]. 中国老年学杂志,2014,34(1):270−273. [WANG Q W, FAN W B, WANG Z H, Et al. Research progress on the relationship between oxidative stress and cardiovascular diseases[J]. Chinese Journal of Gerontology,2014,34(1):270−273. doi: 10.3969/j.issn.1005-9202.2014.01.137
    [38]
    付建芳, 姬秋和, 张锐, 等. 2型糖尿病患者血糖和氧化应激水平相关性研究[J]. 实用预防医学,2011,18(4):604−605. [FU J F, JI Q H, ZHANG R, et al. Study on correlation between plasma glucose and oxidative stress in patients with type 2 diabetes mellitus[J]. Practical Preventive Medicine,2011,18(4):604−605. doi: 10.3969/j.issn.1006-3110.2011.04.008
    [39]
    VIJENDRA M, CHANDNI S, NARENDRA M, et al. Probiotics as potential antioxidants: A systematic review[J]. Journal of Agricultural and Food Chemistry,2015(63):3615−3626.
    [40]
    ZHENG H J, GUO J, QI J, et al. The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: A systematic review and meta-analysis of randomized controlled trials[J]. Pharmacological Research,2019:1−36.
    [41]
    DIPEEKA K M, SRIRAM S. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes[J]. Pancreatology,2019:1−11.
    [42]
    MYUNG H K, SEUNG G K, JEONG H P, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology,2013:1−27.
    [43]
    李琳琳, 杨浩, 王烨. 肠道菌群代谢产物短链脂肪酸与2型糖尿病的关系[J]. 新疆医科大学学报,2017,40(12):1517−1521. [LI L L, YANG H, WANG Y. The relationship between short-chain fatty acids, metabolites of intestinal flora and type 2 diabetes[J]. Journal of Xinjiang Medical University,2017,40(12):1517−1521. doi: 10.3969/j.issn.1009-5551.2017.12.004
    [44]
    潘虹, 王俏梅. 高脂膳食所致大鼠高血糖及其与肠道菌群、代谢产物的相关性实验研究[J]. 药物分析杂志,2019,39(2):280−285. [PAN H, WANG Q M. Experimental study on hyperglycemia induced by high-fatdiet in rats and its correlation with intestinal flora and metabolites[J]. Chin J Pharm Anal,2019,39(2):280−285.
    [45]
    朱晓振, 张菡菡, 孟现尧, 等. 短链脂肪酸改善 2 型糖尿病小鼠胰岛素抵抗和胰腺损伤[J]. 现代食品科技,2020,36(8):1−7. [ZHU X Z, ZHANG H H, MENG X Y, et al. Short-chain fatty acids reduced insulin resistance and pancreatic damage in type 2 diabetic mice[J]. Modern Food Science and Technology,2020,36(8):1−7.
    [46]
    许女, 郭宏萍, 杨光, 等. 山西老陈醋源植物乳杆菌173对II型糖尿病大鼠的降血糖机制[J/OL]. 中国食品学报. 2020: 1−14. https://kns.cnki.net/kcms/detail/11.4528.TS.20201119.0957.002.html.

    XU N, GUO H P, YANG G, et al. Hypoglycemic mechanism of Lactobacillus plantarum 173 isolated from Shanxi aged vinegar on type II diabetes rats[J]. Journal of Chinese Institute of Food Science and Technology, 2020: 1−4. https://kns.cnki.net/kcms/detail/11.4528.TS.20201119.0957.002.html.
    [47]
    胡红莲, 高民. 肠道屏障功能及其评价指标的研究进展[J]. 中国畜牧杂志,2012,48(17):78−82. [HU H L, GAO M. Research progress of intestinal barrier function and its evaluation index[J]. Chinese Journal of Animal Husbandry,2012,48(17):78−82. doi: 10.3969/j.issn.0258-7033.2012.17.021
    [48]
    朱宗涛, 韩冰, 万峰, 等. 益生菌对糖尿病干预作用的研究进展[J]. 食品工业科技,2017,38(21):321−324, 330. [ZHU Z T, HAN B, WAN F, et al. Research progress on the interventional effects of probiotics on diabetes[J]. Science and Technology of Food Industry,2017,38(21):321−324, 330.
    [49]
    HORTON F, WRIGHT J, SMITH L, et al. Increased intestinal permeability to oral chromium (51 Cr)-EDTA in human type 2 diabetes[J]. Diabetic Medicine,2013,31(5):559−563.
  • Cited by

    Periodical cited type(3)

    1. 杨丽凤,毛书灿,汪兰,李平,周志,熊光权,石柳. 宰杀方式对鳝鱼肌肉品质的影响. 食品与机械. 2023(01): 132-138 .
    2. 张震,邱爽,袁娟,夏琳琳,刘春艳,吕晓华. 稳定态二氧化氯对微冻贮藏水产品的防腐保鲜效果研究. 现代预防医学. 2023(08): 1468-1475 .
    3. 范铭良,郝淑贤,李来好,陈胜军,岑剑伟,吴燕燕,魏涯,相欢,黄卉. 真空冷藏条件下罗非鱼内源蛋白酶对鱼片质构劣化的作用. 南方农业学报. 2023(02): 555-563 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (373) PDF downloads (98) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return