Citation: | LIU Donglian, QIN Qin, YANG Ting, et al. Protective Effect of Total Glucosides of Paeony on Renal in Rats with Hyperuricemic Nephropathy[J]. Science and Technology of Food Industry, 2021, 42(22): 344−349. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010142. |
[1] |
邓娟, 贾红. 高尿酸血症的流行病学研究现状[J]. 医学综述,2014,20(6):972−975. [DENG J, JIA H. Epidemiological research status of hyperuricemia[J]. Medical Review,2014,20(6):972−975. doi: 10.3969/j.issn.1006-2084.2014.06.005
|
[2] |
王荣, 汤哲, 孙菲, 等. 中国7城市老年人高尿酸血症患病率调查[J]. 中华流行病学杂志,2018,39(3):286−288. [WANG R, TANG Z, SUN F, et al. Prevalence of hyperuricemia in the elderly in 7 areas of China[J]. Chinese Journal of Epidemiology,2018,39(3):286−288. doi: 10.3760/cma.j.issn.0254-6450.2018.03.007
|
[3] |
SAITO Y, TANAKA A, NODE K, et al. Uric acid and cardiovascular disease: A clinical review[J]. J Cardiol,2020:51−57.
|
[4] |
WANG X, DENG J, XIONG C X, et al. Treatment with a PPAR-γ agonist protects against hyperuricemic nephropathy in a rat model[J]. Drug Des Devel Ther,2020,14:2221−2233. doi: 10.2147/DDDT.S247091
|
[5] |
CARLO A S, CRISTINA R, LEONARDO P, et al. Change gout: How to deal with this "silently-developing killer" in everyday clinical practice[J]. Curr Med Res Opin,2018,34(8):1411−1417. doi: 10.1080/03007995.2018.1454896
|
[6] |
FINCH A, KUBLER P. The management of gout[J]. Aust Prescr,2016,39(4):119−122. doi: 10.18773/austprescr.2016.047
|
[7] |
张春婷, 邱智东, 李博文, 等. 保健食品桂芍舒逸口服液的工艺优选与质量标准建立[J]. 食品安全质量检测学报,2019,10(18):6316−6321. [ZHANG C T, QIU Z D, LI B W, et al. Optimization of process and establishment of quality standard of healthy food Guishao Shuyi oral liquid[J]. Journal of Food Safety & Quality,2019,10(18):6316−6321.
|
[8] |
MENG Q, MENG W, BIAN H, et al. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis[J]. Biomed Pharmacother,2021,138:111413. doi: 10.1016/j.biopha.2021.111413
|
[9] |
LIU G, WANG Z, LI X, et al. Total glucosides of paeony (TGP) alleviates constipation and intestinal inflammation in mice induced by sjögren’s syndrome[J]. J Ethnopharmacol,2020,260:113056. doi: 10.1016/j.jep.2020.113056
|
[10] |
SHEN M, MEN R, FAN X, et al. Total glucosides of paeony decreases apoptosis of hepatocytes and inhibits maturation of dendritic cells in autoimmune hepatitis[J]. Biomed Pharmacother,2020,124:109911. doi: 10.1016/j.biopha.2020.109911
|
[11] |
HUANG Y, WANG H, CHEN Z, et al. Efficacy and safety of total glucosides of paeony combined with methotrexate and leflunomide for active rheumatoid arthritis: A meta-analysis[J]. Drug Des Devel Ther,2019,13:1969−1984. doi: 10.2147/DDDT.S207226
|
[12] |
ZHU Q, QI X, WU Y, et al. Clinical study of total glucosides of paeony for the treatment of diabetic kidney disease in patients with diabetes mellitus[J]. Int Urol Nephrol,2016,48(11):1873−1880. doi: 10.1007/s11255-016-1345-5
|
[13] |
ZHU F, XU S, ZHANG Y, et al. Total glucosides of paeony promote intestinal motility in slow transit constipation rats through amelioration of interstitial cells of cajal[J]. Plos One,2016,11(8):0160398.
|
[14] |
刘兴艳, 马舒伟, 李雄伟, 等. 白芍总苷对干燥综合征小鼠肠道微环境调节作用的研究[J]. 中国实验方剂学杂志,2021:5. [LIU X Y, MA S W, LI X W, et al. Regulatory mechanism of total glucosides of paeony on gut microbiota microenvironment in NOD mice with sjögren’s syndrome[J]. Chinese Journal of Experimental Traditional Medical Formulae,2021:5.
|
[15] |
LI M Y, JIANG A P. DNA methylation was involved in total glucosides of paeony regulating ERα for the treatment of female systemic lupus erythematosus mice[J]. J Pharmacol Sci,2019,140(2):187−192. doi: 10.1016/j.jphs.2019.07.003
|
[16] |
LV M M, ZHANG M Y, CHENG Y Z, et al. Renoprotective effects of total glucosides from paeony against nephrotoxicity induced by total alkaloids from Semen strychni[J]. Evid Based Complement Alternat Med,2017:8256278.
|
[17] |
包瑾芳. 自噬在高尿酸血症肾损害中的作用及3-MA干预机制初步探讨[D]. 上海: 上海交通大学, 2019.
BAO J F. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
[18] |
冯学轩, 刘月姝, 饶子亮, 等. 急、慢性高尿酸血症模型的建立[J]. 中国比较医学杂志,2020,30(1):74−80. [FENG X X, LIU Y S, RAO Z L, et al. Establishment of mouse and rat models of acute and chronic experimental hyperuricemia[J]. Chinese Journal of Comparative Medicine,2020,30(1):74−80. doi: 10.3969/j.issn.1671-7856.2020.01.012
|
[19] |
NEMMAR A, AL-SALAMl S, BEEGAM S, et al. Cardiac inflammation, oxidative stress, Nrf2 expression, and coagulation events in mice with experimental chronic kidney disease[J]. Oxid Med Cell Longev,2021:8845607.
|
[20] |
COTE J M, BERUBE A A, BOLLEE G. Association of hyperuricemia with acute kidney injury: Case series report among patients hospitalized with general tonic-clonic seizures[J]. Can j Kidney Health Dis,2020,7:2054358120977386.
|
[21] |
LIU B, ZHAO L, YANG Q, et al. Hyperuricemia and hypertriglyceridemia indicate tubular atrophy/interstitial fibrosis in patients with IgA nephropathy and membranous nephropathy[J]. Int Urol Nephrol,2021:24.
|
[22] |
FIGUEROA S M, ARAOS P, REYES J, et al. Oxidized albumin as a mediator of kidney disease[J]. Antioxidants(basel),2021,10(3):404.
|
[23] |
VERMA S, KELLUM J A. Defining acute kidney injury[J]. Crit Care Clin,2021,37(2):251−266. doi: 10.1016/j.ccc.2020.11.001
|
[24] |
ROBINSON C, BENISTY K, COCKOVSKI V, et al. Serum creatinine monitoring after acute kidney injury in the PICU[J]. Pediatr Crit Care Med,2021,22(4):412−425. doi: 10.1097/PCC.0000000000002662
|
[25] |
RENDA R. Can salivary creatinine and urea levels be used to diagnose chronic kidney disease in children as accurately as serum creatinine and urea levels? A case-control study[J]. Ren Fail,2017,39(1):452−457. doi: 10.1080/0886022X.2017.1308256
|
[26] |
LI S Z, SUN Z Z, ZHANG Y, et al. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation[J]. Oncotarget,2017,8(6):10185−10198. doi: 10.18632/oncotarget.14363
|
[27] |
KONTA T, KAMEI K, ICHIKAWA K, et al. The association between serum uric acid and renal damage: The takahata study-new insights[J]. Contrib Nephrol,2018,192:34−40.
|
[28] |
LI Z H, SHENG Y Y, LIU C, et al. Nox4 has a crucial role in uric acidinduced oxidative stress and apoptosis in renal tubular cells[J]. Mol Med Rep,2016,13(5):4343. doi: 10.3892/mmr.2016.5083
|
[29] |
LIU H F, XIONG J H, HE T, et al. High uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB signaling pathway[J]. Am j Nephrol,2017,46(4):333−342. doi: 10.1159/000481668
|
[30] |
TAO M, SHI Y F, TANG L X, et al. Blockade of ERK1/2 by U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with hyperuricemic nephropathy[J]. Am j Physiol Renal Physiol,2019,316(4):660−673. doi: 10.1152/ajprenal.00480.2018
|
[31] |
SHAO Y X, GONG Q, QI X M, et al. Paeoniflorin ameliorates macrophage infiltration and activation by inhibiting the TLR4 signaling pathway in diabetic nephropathy[J]. Front Pharmacol,2019,10:566. doi: 10.3389/fphar.2019.00566
|
[32] |
CHEN F, HU Y, XIE Y, et al. Total glucosides of paeony alleviate cell apoptosis and inflammation by targeting the long noncoding RNA XIST/MicroRNA-124-3p/ITGB1 axis in renal ischemia/reperfusion injury[J]. Mediators Inflamm,2020:8869511.
|
1. |
陈星星. 水产品中重金属分析技术的研究进展. 浙江农业科学. 2023(06): 1404-1407 .
![]() | |
2. |
闫奕霏,高薪,汤修映. 基于近红外漫反射光谱的面包老化过程中非冻结水含量无损检测. 食品安全质量检测学报. 2022(22): 7264-7271 .
![]() |