LV Jingwei, LI Chunnan, LI Guang, et al. Study on Anti-osteoporosis Substance and Mechanism of Action of Spatholobi Caulis Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(4): 350−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010119.
Citation: LV Jingwei, LI Chunnan, LI Guang, et al. Study on Anti-osteoporosis Substance and Mechanism of Action of Spatholobi Caulis Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(4): 350−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010119.

Study on Anti-osteoporosis Substance and Mechanism of Action of Spatholobi Caulis Based on Network Pharmacology and Molecular Docking

More Information
  • Received Date: January 17, 2021
  • Available Online: December 12, 2021
  • Objective: To investigate the anti-osteoporotic substances and mechanism of action of the Chinese herbal medicine Spatholobi Caulis. Methods: The active ingredients were acquired with TCMSP, and the targets were obtained with PharmMapper. The common targets were used for the construction of an “ingredient-target” network by Cytoscape 3.7.2, ClueGo and KEGG enrichment analysis were carried out to determine the key pathway of the anti-osteoporosis effect of Spatholobi Caulis. The betweenness, closeness and subnetwork centrality of the nodes were calculated by the CytoNCA. The first 10% nodes of the three indicators were overlaid to screen the key targets for molecular docking analysis. Results: Fourteen active ingredients of Spatholobi Caulis were screened out, involving 221 osteoporotic targets. Its biological target network (456 nodes, 5723 edges) and KEGG pathway network (124 nodes, 365 edges) were obtained by using ClueGo. Two key proteins, SRC and CTSK, were comprehensively screened out by combining the three indicators of the CytoNCA. The results of molecular docking showed that the average binding energy of components JXT-13 and JXT-06 of Spatholobi Caulis to SRC and CTSK were −6.32 and −5.47 kcal/mol, respectively. This result was similar to the original ligand with stable conformation and strong binding energy in protein. Conclusion: The two active components of Spatholobi Caulis play an anti-osteoporosis role by inhibiting SRC and CTSK proteins. Therefore, elucidating the mechanism of action of Chinese herbal medicine by identifying components or targets is an effective and comprehensive strategy.
  • [1]
    LONG Z, WU J, XIANG W, et al. Exploring the mechanism of icariin in osteoporosis based on a network pharmacology strategy[J]. Med Sci Monit,2020,26:e924699.
    [2]
    TANG X, BAI Y, ZHANG Z, et al. A validated miRNA signature for the diagnosis of osteoporosis related fractures using SVM algorithm classification[J]. Exp Ther Med,2020,20(3):2209−2217.
    [3]
    TANG G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans[J]. Am J Clin Nutr,2010,91(5):1468s−1473s. doi: 10.3945/ajcn.2010.28674G
    [4]
    LEE J C, LIN C K, TSENG C K, et al. Discovery of 3-amino-2-hydroxypropoxyisoflavone derivatives as potential anti-HCV agents[J]. Molecules,2018,23(11):2863. doi: 10.3390/molecules23112863
    [5]
    TSENG C H, CHEN Y L, LU C M, et al. Synthesis and anti-osteoporotic evaluation of certain 3-amino-2-hydroxypropoxyisoflavone derivatives[J]. Eur J Med Chem,2009,44(9):3621−3626. doi: 10.1016/j.ejmech.2009.02.025
    [6]
    张广文, 陈青海, 宁学乾, 等. 大豆异黄酮对骨质疏松大鼠模型的作用探讨[J]. 中国微生态学杂志,2020,32(12):1397−1403. [ZHANG G W, CHEN Q H, NING X Q, et al. Effect of soybean isoflavones on osteoporosis rat model[J]. Chin J Microecol,2020,32(12):1397−1403.
    [7]
    HANAKA A, DRESLER S, WÓJCIAK-KOSIOR M, et al. The impact of long-and short-term strontium treatment on metabolites and minerals in glycine max[J]. Molecules,2019,24(21):3825. doi: 10.3390/molecules24213825
    [8]
    QIN S, WU L, WEI K, et al. A draft genome for Spatholobus suberectus[J]. Sci Data,2019,6(1):113. doi: 10.1038/s41597-019-0110-x
    [9]
    LEE M H, LIN Y P, HSU F L, et al. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells[J]. Phytochemistry,2006,67(12):1262−1270. doi: 10.1016/j.phytochem.2006.05.008
    [10]
    张庆熙, 金晨, 陈康, 等. 我国鸡血藤属和崖豆藤属药用植物的研究现状及比较[J]. 中国实验方剂学杂志,2021,27(16):198−208. [ZHANG Q X, JIN C, CHEN K, et al. Research status and comparison on medicinal plants of Callerya and Millettia in China[J]. Chinese Journal of Experimental Traditional Medical Formulae,2021,27(16):198−208.
    [11]
    余弯弯, 金晨, 双鹏程, 等. 丰城鸡血藤异黄酮及黄烷类化学成分的研究[J]. 中国中药杂志,2015,40(12):2363−2366. [YU W W, JIN C, SHUANG P C, et al. Isoflavones and flavans from Millettia nitida var. hirsutissima[J]. China Journal of Chinese Materia Medica,2015,40(12):2363−2366.
    [12]
    冯淑华, 陈虹, 刘薇. 8味中药提取物对MC3T3-E1细胞增殖及碱性磷酸酶活性的影响[J]. 中成药,2010,32(4):661−663. [FENG S F, CHEN H, LIU W. Effects of 8 Chinese herbal extracts on the proliferation and alkaline phosphatase activity of MC3T3-E1 cells[J]. Chinese Traditional Patent Medicine,2010,32(4):661−663. doi: 10.3969/j.issn.1001-1528.2010.04.041
    [13]
    冯淑华, 李可意, 李灵芝. 6种中药粗提物对胎鼠体外骨生长的影响[J]. 北京联合大学学报(自然科学版),2009,23(1):11−13,17. [FENG S H, LI K Y, LI L Z. Effect of 6 Chinese medicines' extraction on bone growth for embryo rat in vitro[J]. Journal of Beijing Union University,2009,23(1):11−13,17.
    [14]
    曹辉, 周霖, 孙志, 等. 基于UHPLC-Q-Orbitrap HRMS结合整合网络药理学的藤黄健骨胶囊化学成分识别及作用机制初步研究[J]. 中草药,2020,51(9):2408−2417. [CAO H, ZHOU L, SUN Z, et al. Chemical composition identification and mechanism study of Tenghuang Jiangu capsule based on UHPLC-Q-Orbitrap HRMS and network pharmacology[J]. Chinese Traditional and Herbal Drugs,2020,51(9):2408−2417.
    [15]
    丁平, 仰铁锤, 林振坤, 等. 鸡血藤化学成分的指纹图谱研究[J]. 华西药学杂志,2010,25(4):461−463. [DING P, YANG T C, LIN Z L K, et al. Study on HPLC chromatographic fingerprint of Spatholobi Caulis[J]. West China Journal of Pharmaceutical Sciences,2010,25(4):461−463.
    [16]
    严启新, 李萍. 鸡血藤高效液相色谱指纹图谱研究[J]. 中草药,2004(5):80−83. [YAN Q X, LI P. Study on HPLC f ingerprint of Spatholobi Caulis[J]. Chinese Traditional and Herbal Drugs,2004(5):80−83.
    [17]
    刘静, 苏建春, 甘林建, 等. 鸡血藤UPLC指纹图谱及模式识别研究[J]. 中国实验方剂学杂志,2014,20(4):87−90. [LIU J, SU J C, GAN L J, et al. UPLC fingerprint analysis and pattern recognition of Spatholobus suberectus[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014,20(4):87−90.
    [18]
    杨冉冉, 姬蕾, 李二文, 等. 鸡血藤的HPLC指纹图谱及模式识别研究[J]. 中草药,2017,48(21):4530−4536. [YANG R R, JI L, LI E W, et al. HPLC fingerprint analysis and pattern recognition of Spatholobus suberectus[J]. Chinese Traditional and Herbal Drugs,2017,48(21):4530−4536. doi: 10.7501/j.issn.0253-2670.2017.21.026
    [19]
    王宏, 刘艺娜, 曾祖平, 等. 鸡血藤抗肿瘤活性部位SSCE指纹图谱的研究[J]. 中国中药杂志,2011,36(18):2525−2529. [WANG H, LIU Y, ZENG Z P, et al. Study on HPLC chromatographic fingerprint of anti-tumor active site SSCE of Spatholobi Caulis[J]. China Journal of Chinese Materia Medica,2011,36(18):2525−2529.
    [20]
    郭希庆. 鸡血藤糖浆中芒柄花素含量的高效液相色谱法测定[J]. 时珍国医国药,2013,24(11):2657−2658. [GUO X Q. Determination of mangostemonin in chicken blood vine syrup by high performance liquid chromatography[J]. Lishizhen Medicine and Materia Medica Research,2013,24(11):2657−2658.
    [21]
    沈红波, 周一农, 郑杰, 等. 基于网络药理学葵花护肝片“多成分-多靶点-多通路”的作用机制研究[J]. 中国中药杂志,2019,44(7):1464−1474. [SHEN H B, ZHOU Y N, ZHENG J, et al. “Multi-component-multi-target-multi-pathway” mechanism of Kuihua Hugan Tablets based on network pharmacology[J]. China Journal of Chinese Materia Medica,2019,44(7):1464−1474.
    [22]
    徐建亚, 顾勤, 夏卫军. 鸡血藤对黑色素瘤细胞黏附、侵袭、运动和转移能力的影响[J]. 中药材,2010,33(10):1595−1599. [XU J Y, GU Q, XIA W J, et al. Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells[J]. Journal of Chinese Medicinal Materials,2010,33(10):1595−1599.
    [23]
    孙凯, 朱立国, 魏戌, 等. 基于网络药理学的“淫羊藿-白芍”配伍治疗腰椎间盘突出症作用机制研究[J]. 中国中药杂志,2020,45(3):609−616. [SUN K, ZHU L G, WEI X, et al. Study on mechanism of “Epimedii Folium-Paeoniae Radix Alba” in treatment of lumbar disc herniation based on network pharmacology[J]. China Journal of Chinese Materia Medica,2020,45(3):609−616.
    [24]
    孙鹏辉, 袁普卫, 李堪印. 名老中医李堪印运用藤类药物治疗痹症的经验[J]. 中国中医骨伤科杂志,2020,28(3):75−78. [SUN P H, YUAN P W, LI K Y. Experience of famous veteran Chinese medicine practitioner Li Kanyin in the treatment of paralysis using rattan drugs[J]. Chinese Journal of Traditional Medical Traumatology & Orthopedics,2020,28(3):75−78.
    [25]
    WANG X, SHEN Y, WANG S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Res,2017,45(W1):w356−w360. doi: 10.1093/nar/gkx374
    [26]
    OTASEK D, MORRIS J H, BOUCAS J, et al. Cytoscape automation: Empowering workflow-based network analysis[J]. Genome Biol,2019,20(1):185. doi: 10.1186/s13059-019-1758-4
    [27]
    LEVINSON N M, BOXER S G. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity[J]. Nat Chem Biol,2014,10(2):127−132. doi: 10.1038/nchembio.1404
    [28]
    DOSSETTER A G, BEELEY H, BOWYER J, et al. (1R, 2R)-N-(1-cyanocyclopropyl)-2-(6-methoxy-1, 3, 4, 5-tetrahydropyrido [4,3-b] indole-2-carbonyl) cyclohexanecarboxamide (AZD4996): A potent and highly selective cathepsin K inhibitor for the treatment of osteoarthritis[J]. J Med Chem,2012,55(14):6363−6374. doi: 10.1021/jm3007257
    [29]
    UEHARA S, UDAGAWA N, KOBAYASHI Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts[J]. Cellular and Molecular Life Sciences,2018,75(20):3683−3692. doi: 10.1007/s00018-018-2881-1
    [30]
    ALEMAN J O, FAROOKI A, GIROTRA M. Effects of tyrosine kinase inhibition on bone metabolism: Untargeted consequences of targeted therapies[J]. Endocr Relat Cancer,2014,21(3):R247−259. doi: 10.1530/ERC-12-0400
    [31]
    XIE Y, ZHANG L, XIONG Q, et al. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation[J]. Bone Res,2019,7:25. doi: 10.1038/s41413-019-0066-7
    [32]
    BROWN M T, COOPER J A. Regulation, substrates and functions of src[J]. Biochim Biophys Acta,1996,1287(2-3):121−149.
    [33]
    SORIANO P, MONTGOMERY C, GESKE R, et al. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice[J]. Cell,1991,64(4):693−702. doi: 10.1016/0092-8674(91)90499-O
    [34]
    LOREDO-PEREZ A A, MONTALVO-BLANCO C E, HERNANDEZ GONZALEZ L I, et al. High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis[J]. Obesity(Silver Spring),2016,24(5):1106−1115.
    [35]
    王馨苑, 黄夏冰, 邓鑫. 基于网络药理学和分子对接探讨黄连素治疗2型糖尿病机制研究[J]. 中国新药杂志,2020,29(24):2820−2831. [WANG X Y, HUANG X B, DENG X. Exploring the mechanism of safranin for the treatment of type 2 diabetes based on network pharmacology and molecular docking[J]. Chinese Journal of New Drugs,2020,29(24):2820−2831.
    [36]
    曾荣, 徐家科, 赵劲民, 等. 芦荟大黄素对小鼠破骨细胞增殖的抑制作用研究[J]. 广西医科大学学报,2016,33(2):240−242. [ZENG R, XU J K, ZHAO J M, et al. Study on the inhibitory effect of aloe vera rhodopsin on the proliferation of mouse osteoblasts[J]. Journal of Guangxi Medical University,2016,33(2):240−242.
    [37]
    雷丽娟. 大血藤总酚及其抗类风湿性关节炎骨破坏作用研究[D]. 贵阳: 贵州大学, 2019

    LEI L J. Study on the total phenol of Da Blood Vine and its anti-rheumatoid arthritis bone destruction effect[D]. Guiyang: Guizhou University, 2019.
  • Cited by

    Periodical cited type(9)

    1. 向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
    2. 赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
    3. 刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
    4. 李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
    5. 张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
    6. 吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
    7. 芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
    8. 孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 . 本站查看
    9. 周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (405) PDF downloads (47) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return