XU Wei, ZHANG Xue, WANG Zhishuo, et al. Isolation, Identification and Biological Characteristics of Endophytic Fungi from Wild Boletus[J]. Science and Technology of Food Industry, 2021, 42(21): 118−124. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010061.
Citation: XU Wei, ZHANG Xue, WANG Zhishuo, et al. Isolation, Identification and Biological Characteristics of Endophytic Fungi from Wild Boletus[J]. Science and Technology of Food Industry, 2021, 42(21): 118−124. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010061.

Isolation, Identification and Biological Characteristics of Endophytic Fungi from Wild Boletus

More Information
  • Received Date: January 10, 2021
  • Available Online: August 25, 2021
  • Four strains of endophytic fungi were isolated and purified from wild bodies of Leccinum crocipodium, Boletus speciosus, and Boletus bicolor by tissue separation method. Microscopic observation of its colonies, hyphae, and conidia morphology, and molecular biological identification of rDNA ITS sequence results showed that: Strain LCTG-12 was Trichoderma gamsii, LCCK-6 was Candida kruisii, BSHC-18 was Hypomyces chrysospermus, BBFO-10 was Fusarium oxysprum. The biological characteristics of four endophytic fungi studied, among them, the mycelium of Trichoderma gamsii growed faster, cultured on CPDA medium at 25 ℃ for 5 days, mycelium could cover the entire medium. In liquid culture, the strain could obtain 4.13 g/L of dry biomass of mycelium at 25 °C, shaker speed 160 r/min, pH5.5, and 8 days. The results of the flat panel stand-off experiment: LCTG-12 Trichoderma gamsii had an antagonistic effect on the growth of BSHC-18 Hypomyces chrysospermus and BBFO-10 Fusarium oxysprum, at the same time, BSHC-18 Hypomyces chrysospermus and BBFO-10 Fusarium oxysporum had an antagonistic effect. Therefore, the endophytic fungi Trichoderma gamsii of boletus had an antagonistic effect on spoilage fungi and may be an excellent strain for biological control.
  • [1]
    PETRINI O. Fungal endophytes of tree leaves[C]//Andrews J H, Hirano S S. eds. Microbial ecology of leaves. New York: Springer-Verlag, 1991: 179−197.
    [2]
    ZHAO W T, SHI X, XIAN P J, et al. A new fusicoccane diterpene and a new polyene from the plant endophytic fungus Talaromyces pinophilus and their antimicrobial activities[J]. Natural Product Research,2021,35(1):124−130. doi: 10.1080/14786419.2019.1616727
    [3]
    李臻, 杨静雨, 蔡瑾, 等. 角果木内生真菌Cladosporium sp. JJM22次级代谢产物研究[J]. 中国中药杂志,2021,46(8):2079−2083. [LI Z, YANG J Y, CAI J, et al. Investigation on secondary metabolites of endophytic fungus Cladosporium sp. JJM22 hosted in Ceriops tagal[J]. China Journal of Chinese Materia Medica,2021,46(8):2079−2083.
    [4]
    LIM S M, AGATONOVIC K S, LIM F T, et al. High-performance thin layer chromatography-based phytochemical and bioactivity characterization of anticancer endophytic fungal extracts derived from marine plants[J]. Journal of Pharmaceutical and Biomedical Analysis,2021,193:113702. doi: 10.1016/j.jpba.2020.113702
    [5]
    SHOEB M, HOQUE M E, Thoo-Lin P K, et al. Anti-pancreatic cancer potential of secalonic acid derivatives from endophytic fungi isolated from ocimum basilicum[J]. Dhaka University Journal of Pharmaceutical Sciences,2013,12(2):91−95.
    [6]
    靳锦, 赵庆, 张晓梅, 等. 植物内生菌活性代谢产物最新研究进展[J]. 微生物学杂志,2018,38(3):103−113. [JIN J, ZHAO Q, ZHANG X M, et al. Research progress on bioactive products from endophytes[J]. Journal of Microbiology,2018,38(3):103−113. doi: 10.3969/j.issn.1005-7021.2018.03.17
    [7]
    RODRIGUEZ R J, WHITE J F, ARNOLD A E, et al. Fungal endophytes: Diversity and functional roles[J]. New Phytologist,2009,182(2):314−330. doi: 10.1111/j.1469-8137.2009.02773.x
    [8]
    卯晓岚. 中国大型真菌[M]. 郑州: 河南科学技术出版社, 2000: 315.

    MAO X L. Chinese macro fungi[M]. Zhengzhou: Henan Science and Technology Press, 2000: 315.
    [9]
    李泰辉, 宋斌. 中国牛肝菌已知种类[J]. 贵州科学,2003,3(21):78−86. [LI T H, SONG B. Bolete species known from China[J]. Guizhou Science,2003,3(21):78−86.
    [10]
    顾可飞, 李亚莉, 刘海燕, 等. 牛肝菌、羊肚菌营养功能特性及利用价值浅析[J]. 食品工业,2018,39(5):287−291. [GU K F, LI Y L, LIU H Y, et al. Initial analysis on the nutritional and functional properties and utilization of bolete and toadstool[J]. The Food Industry,2018,39(5):287−291.
    [11]
    王林. 两种可食大型真菌的化学成分及其生物活性研究[D]. 海南: 海南大学, 2018.

    WANG L. Study on the chemical constituents and bioactivities from the fruiting bodies of two edible macro fungi[D]. Hainan: Hainan University, 2018.
    [12]
    肖艳红, 张晓敏, 郭梦南, 等. 牛肝菌多糖对2型糖尿病大鼠血糖、体重及血脂水平的影响[J]. 中国老年学杂志,2018,38(5):1192−1194. [XIAO Y H, ZHANG X M, GUO M N, et al. Effects of boletus polysaccharides on blood sugar, body weight and blood lipid levels in type 2 diabetic rats[J]. Chinese Journal of Gerontology,2018,38(5):1192−1194. doi: 10.3969/j.issn.1005-9202.2018.05.065
    [13]
    徐胜平, 刘雨阳, 吴素蕊, 等. 4种云南野生牛肝菌的多酚含量及其抗氧化活性[J]. 中国食用菌,2015,34(6):54−59. [XU S P, LIU Y Y, WU S R, et al. Polyphenol content and antioxidant activity of four kinds of Yunnan wild boletus[J]. Edible Fungi of China,2015,34(6):54−59.
    [14]
    郑俏然, 张恒, 李文峰, 等. 美味牛肝菌多糖对急性肝损伤小鼠的保肝作用[J]. 食品与机械,2019,35(12):141−145. [ZHENG Q R, ZHANG H, LI W F, et al. Effect of Boletus edulis polysaccharides on liver protection to CCl4-induced acute hepativ damage mice[J]. Food & Machinery,2019,35(12):141−145.
    [15]
    WANG D, SUN S Q, WU W Z, et al. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice[J]. Carbohydrate Polymers,2014,105:127−134. doi: 10.1016/j.carbpol.2013.12.085
    [16]
    YANG S W, MENG Y H, YAN J M, et al. Polysaccharide-enriched fraction from Amillariella mellea fruiting body improves insulin resistance[J]. Molecules,2019,24(1):46.
    [17]
    张冰冰, 张国珍, 樊莉娟, 等. 暗褐网柄牛肝菌的分子鉴定及母种培养基筛选[J]. 生物学杂志,2021,38(2):61−64. [ZHANG B B, ZHANG G Z, FAN L J, et al. Molecular identification and selection of mother culture media of Phlebopus portentosus[J]. Journal of Biology,2021,38(2):61−64.
    [18]
    MCLAUGHLIN D J. Environmental control of fruitbody development in boletus rubellus in axenic culture[J]. Mycologia,1970,62(2):307−331. doi: 10.1080/00275514.1970.12018970
    [19]
    王林, 马青云, 黄圣卓, 等. 牛肝菌化学成分及其生物活性的研究进展[J]. 热带生物学报,2017,8(1):127−132. [WANG L, MA Q Y, HUANG S Z, et al. Research progress on chemical constituents and biological activities of boletus[J]. Journal of Tropical Biology,2017,8(1):127−132.
    [20]
    郭磊, 范方宇, 刘云, 等. 牛肝菌液态发酵及活性成分诱导培养研究进展[J]. 食品工业科技,2021,42(8):354−359. [GUO L, FAN F Y, LIU Y, et al. Research progress on liquid fementation and induction culture of bioactive compounds from boletaceae fungi[J]. Science and Technology of Food Industry,2021,42(8):354−359.
    [21]
    丁小维, 刘开辉, 邓百万, 等. 两株牛肝菌内生真菌的分离鉴定及活性初步研究[J]. 中国抗生素杂志,2011,36(12):885−888. [DING X W, LIU K H, DENG B W, et al. Isolation, identification and bioactive assays of two endophytic fungi associated with boletaceae[J]. Chinese Journal of Antibiotics,2011,36(12):885−888.
    [22]
    岳万松, 熊勇, 陈毅坚. 云南牛肝菌的内生真菌分离、鉴定和ITS序列特征研究[J]. 食品工业科技,2014,35(19):172−176. [YUE W S, XIONG Y, CHEN Y J. Isolation and identification of endophytic fungi from different boletus in Yunnan and ITS region sequence analysis[J]. Science and Technology of Food Industry,2014,35(19):172−176.
    [23]
    张俊兰. 食用菌内生菌的分离鉴定及其代谢产物的初步研究[D]. 福州: 福建农林大学, 2010.

    ZHANG J L. Isolation and identification of mushroom endophyte and the preliminary of their metabolites[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010.
    [24]
    刘灿, 生吉萍, David Y, 等. 双孢菇内生枯草芽孢杆菌AB154中抑制人结肠癌Caco-2活性成分的发现及机理研究[J]. 中国食品学报,2017,17(12):26−34. [LIU C, XING J P, DAVID Y, et al. Discovery and mechanism of the active ingredients inhibiting Caco-2 of human colon cancer from endophytic Bacillus subtilis AB154 of Agaricus bisporus[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(12):26−34.
    [25]
    李红玉. 天麻内生真菌Aspergillus sp. T2-19与蜜环菌共培养活性次生代谢产物研究[D]. 昆明: 云南大学, 2019.

    LI H Y. The active secondary metabolites from co-culture of the endophytes fungus Aspergillus sp. T2-19 associated with Gastrodia elata and Armillaria sp.[D]. Kunming: Yunnan University, 2019.
    [26]
    刘青, 李升, 梁才康, 等. 贵州地区木霉菌分离鉴定及对辣椒疫霉的拮抗作用[J]. 微生物学通报,2019,46(4):741−751. [LI Q, LI S, LIANG C K, et al. Isolation and identification of Trichoderma spp. against Phytophthora capsici[J]. Microbiology China,2019,46(4):741−751.
    [27]
    陈少珍, 黄思良, 闭志强. 蘑菇枯萎病病原菌分离与鉴定[J]. 植物保护,2005(6):94−95. [CHEN S Z, HUANG S L, BI Z Q. Isolation and identification of the pathogen of mushroom fusarium wilt[J]. Plant Protection,2005(6):94−95. doi: 10.3969/j.issn.0529-1542.2005.06.033
    [28]
    康晓慧. 双孢蘑菇病原菌点枝顶孢菌和半裸镰刀菌的鉴定和药剂防治试验[J]. 中国植保导刊,2005(10):24−25. [KANG X H. Identification of the pathogens of Agaricus bisporus and Acremonium punctatus and Fusarium seminudeus and their control test[J]. China Plant Protection,2005(10):24−25. doi: 10.3969/j.issn.1672-6820.2005.10.008
    [29]
    宋小亚, 李阳, 吴春玲, 等. 寄生于牛肝菌的金孢菌寄生菌[C]//中国菌物学会第五届会员代表大会暨2011 年学术年会论文摘要集. 广州: 中国菌物学会, 2011: 22−23.

    SONG X Y, LI Y, WU C L, et al. Mycoparasitic fungus Sepedonium chrysospermun on bolote[C]//The Fifth Member Congress of the Chinese Society of Mycology and Abstracts of the 2011 Academic Annual Conference. Guangzhou: Mycological Society of China, 2011: 22−23.
    [30]
    GALLETTI S, PARIS R, CIANCHETTA S. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge[J]. Microbiological Research,2020,233:126406. doi: 10.1016/j.micres.2019.126406
    [31]
    SANGUINETI E, COSULICH M E, SALIS A, et al. A hemolytic peptide from the mycophilic fungus Sepedonium chrysospermum (Bull.) Fr[J]. Applied Microbiology and Biotechnology,2012,94(4):987−994. doi: 10.1007/s00253-011-3675-7
  • Related Articles

    [1]GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286
    [2]LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282
    [3]ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356
    [4]LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101
    [5]DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233
    [6]ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042
    [7]MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002
    [8]SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037
    [9]LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017
    [10]SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029
  • Cited by

    Periodical cited type(10)

    1. 夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
    2. 李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 . 本站查看
    3. 杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
    4. 符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
    5. 侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
    6. 张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
    7. 吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
    8. 赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 . 本站查看
    9. 樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
    10. 董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (346) PDF downloads (26) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return