Citation: | CAO Kun, WANG Ruonan, FANG Yali, et al. Investigation on the Effect of Temperature on the Activity of Lactate Dehydrogenase Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2022, 43(1): 134−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010025. |
[1] |
DELCENSERIE V, MARTEL D, LAMOUREUX M, et al. Immunomodulatory effects of probiotics in the intestinal tract[J]. Current Issues in Molecular Biology,2008,10(1-2):37−54.
|
[2] |
ZHU Z Y, CUI D, GAO H, et al. Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides[J]. European Journal of Medicinal Chemistry,2016,114:8−13. doi: 10.1016/j.ejmech.2016.03.007
|
[3] |
WANG L, ZHANG Y, FAN G, et al. Effects of orange essential oil on intestinal microflora in mice[J]. Journal of the Science of Food and Agriculture,2019,99(8):4019−4028. doi: 10.1002/jsfa.9629
|
[4] |
尤可言, 荒草. 自制酸奶和市售酸奶[J]. 少儿科技,2019,182,183(Z2):20−20. [YOU K Y, HUANG C. Homemade yogurt and commercially available yogurt[J]. Children's Science and Technology,2019,182,183(Z2):20−20.
|
[5] |
刘学云, 于新, 何嘉敏, 等. 九种益生菌之间的相互作用及协同共生机理[J]. 食品与发酵工业,2019,45(13):65−70. [LIU X Y, YU X, HE J M, et al. Interactions between nine probiotics and mechanisms of cooperative symbiosis[J]. Food and Fermentation Industry,2019,45(13):65−70.
|
[6] |
王希, 洪鲲, 赵玉丹, 等. 乳酸发酵第2阶段能量释放生物学教学研究[J]. 生物学通报,2019(2):43−45. [WANG X, HONG K, ZHAO Y D, et al. Teaching research on energy release biology in the second stage of lactic acid fermentation[J]. Biology Bulletin,2019(2):43−45. doi: 10.3969/j.issn.0006-3193.2019.02.018
|
[7] |
BUJNA E, NIKOLETTA A F, TRAN A M, et al. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains[J]. Food Science and Biotechnology,2018,27(2):547−554.
|
[8] |
GODERSKA K. The antioxidant and prebiotic properties of lactobionic acid[J]. Applied Microbiology & Biotechnology,2019,103(9):3737−3751.
|
[9] |
WANGA M, CHENA Y, WANGC Y, et al. Beneficial changes of gut microbiota and metabolism in weaned rats with Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 supplementation[J]. Journal of Functional Foods,2018,48:252−265. doi: 10.1016/j.jff.2018.07.008
|
[10] |
钟秀斌, 邓申彪, 沈洋. 一种乳酸菌发酵的温度控制装置: 中国, CN211199202U[P], 2020.08.
ZHONG X B, DENG S B, SHEN Y. A temperature control device for lactic acid bacteria fermentation: China, CN21119902u [P]. 2020.08.
|
[11] |
岳林芳, 王俊国, 萨如拉, 等. 培养条件对乳酸菌发酵剂抗冷冻干燥性能影响的研究进展[J]. 食品科学,2016,7(11):270−276. [YUE L F, WANG J G, SA R L, et al. Effects of culture time, temperature and medium composition on freeze drying resistance of lactic acid bacteria starter[J]. Food Science,2016,7(11):270−276. doi: 10.7506/spkx1002-6630-201611047
|
[12] |
侯若冰, 陈志达, 卞江, 等. L-乳酸脱氢酶催化反应机理的理论研究进展[J]. 化学通报,2000(1):15−21. [HOU R B, CHEN Z D, BIAN J, et al. Progress in theoretical research on catalytic reaction mechanism of L-lactate dehydrogenase[J]. Chemical Bulletin,2000(1):15−21. doi: 10.3969/j.issn.0441-3776.2000.01.004
|
[13] |
DE BEER D, TOBIN J, WALCZAK B, et al. Phenolic composition of rooibos changes during simulated fermentation: Effect of endogenous enzymes and fermentation temperature on reaction kinetics[J]. Food Research International,2019,121(JUL.):185−196.
|
[14] |
蔡沛蓉, 冯楠楠, 郑豪, 等. 玉米赤霉烯酮对大鼠睾丸支持细胞乳酸产生及相关蛋白表达的影响[J]. 南京农业大学学报,2019,42(5):911−916. [CAI P R, FENG N N, ZHENG H, et al. Effect of zearalenone on lactic acid production and expression of related proteins in Sertoli cells[J]. Journal of Nanjing Agricultural University,2019,42(5):911−916. doi: 10.7685/jnau.201812027
|
[15] |
鲍志伟, 苏晓, 杨柳婷, 等. 重组大肠杆菌全细胞合成D-苯基乳酸[J]. 食品与发酵工业,2019,45(1):49−53. [BAO Z W, SU X, YANG L T, et al. Biocatalytic production of D-phenyllactic acid by using whole cells of recombinant Escherichia coli[J]. Food and Fermentation Industries,2019,45(1):49−53.
|
[16] |
BLECKWEDEL J, MOHAMED F, MOZZI F, et al. Major role of lactate dehydrogenase D-LDH1 for the synthesis of lactic acid in Fructobacillus tropaeoli CRL 2034[J]. Applied Microbiology and Biotechnology,2020,104(3):7409−7426.
|
[17] |
ANDRES J, MOLINER V, KRECHL J, et al. A PM3 quantum chemical study of the pyruvate reduction mechanism catalyzed by lactate dehydrogenase[J]. Bioorganic Chemistry,1993,21(3):260−274. doi: 10.1006/bioo.1993.1022
|
[18] |
ASLAN A S, BIRMINGHAM W R, KARAGULER N G, et al. Semi-rational design of Geobacillus stearothermophilus l-lactate dehydrogenase to access various chiral alpha-Hydroxy acids[J]. Applied Biochemistry and Biotechnology,2016,179:474−484. doi: 10.1007/s12010-016-2007-x
|
[19] |
ZHANG Y, TAN H, ZHAO J X, et al. Structural change from homogenous structure to staging in benzoic acid intercalated LDH: Experimental and molecular dynamics simulation insights[J]. Physical Chemistry Chemical Physics,2012,14(25):9067. doi: 10.1039/c2cp40674h
|
[20] |
CAO K, LI N, WANG H, et al. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc[J]. Journal of Biological Chemistry,2018:6075−6089.
|
[21] |
CAO K, ZHANG J, MIAO X Y, et al. Evolution and molecular mechanism of PitAs in iron transport ofStreptococcus species[J]. Journal of Inorganic Biochemistry,2018:113−123.
|
[22] |
曹剑, 曹赞霞, 赵立岭, 等. 分子动力学模拟Cu2+对α-突触核蛋白(1-17)肽段构象变化的影响[J]. 物理化学学报,2012(2):479−488. [CAO J, CAO Z X, ZHAO L L, et al. Effect of Cu2+ on conformational changes of α-synuclein (1-17) peptide by molecular dynamics simulation[J]. Acta Physicochemical Sinica,2012(2):479−488. doi: 10.3866/PKU.WHXB201111231
|
[23] |
VERMAAS J V, HARDY D J, STONE J E, et al. TopoGromacs: Automated topology conversion from CHARMM to Gromacs within VMD[J]. Journal of Chemical Information and Modeling,2016,56(6):1112−1116. doi: 10.1021/acs.jcim.6b00103
|
[24] |
ADAMS M J, FORD G C, KOEKOEK R, et al. Structure of lactate dehydrogenase at 2.8 Å resolution[J]. Nature,1972,227(5263):1098−1103.
|
[25] |
ZHENG Y, GUO S, GUO Z, et al. Effects of N-terminal deletion mutation on rabbit muscle lactate dehydrogenase[J]. Biochemistry (00062979),2004,69(4):401−406.
|
[26] |
UCHIKOBA H, FUSHINOBU S, WAKAGI T, et al. Crystal structure of non-allosteric L-lactate dehydrogenase from Lactobacillus pentosus at 2.3 A resolution: specific interactions at subunit interfaces[J]. Proteins-structure Function & Bioinformatics,2010,46(2):206−214.
|
[27] |
ARAI K, ISHIMITSU T, FUSHINOBU S, et al. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase[J]. Proteins-structure Function & Bioinformatics,2010,78(3):681−694.
|
[28] |
冯涛, 刘芳芳, 荣志伟, 等. 基于分子动力学模拟的直链淀粉风味分子包合物形成机理的研究[J]. 现代食品科技,2015(3):126−132. [FENG T, LIU F F, RONG Z W, et al. Formation mechanism of amylose flavor molecular inclusion complex based on molecular dynamics simulation[J]. Modern Food Science and Technology,2015(3):126−132.
|
[29] |
GREEN S R, STOREY K B. Regulation of crayfish, Orconectes virilis, tail muscle lactate dehydrogenase (LDH) in response to anoxic conditions is associated with alterations in phosphorylation patterns[J]. Comparative Biochemistry & Physiology Part B,2016,202:67−74.
|
[30] |
陈娇, 王玉丽, 徐为人, 等. 分子动力学模拟法研究糖类衍生物与钠-葡萄糖协同转运蛋白2的相互作用[J]. 中草药,2013,44(10):1440−1447. [CHEN J, WANG Y L, XU W R, et al. Study on the interaction between carbohydrate derivatives and sodium glucose cotransporter 2 by molecular dynamics simulation[J]. Chinese Herbal Medicine,2013,44(10):1440−1447.
|
[31] |
丁伟, 刘国宇, 于涛, 等. 分子动力学模拟HEWL晶体在不同环境中的动力学行为[J]. 计算机与应用化学,2010,27(2):173−178. [DING W, LIU G Y, YU T, et al. The molecular dynamics simulation of HEWL in different conditions[J]. Computers and Applied Chemistry,2010,27(2):173−178. doi: 10.3969/j.issn.1001-4160.2010.02.009
|
1. |
向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
![]() | |
2. |
赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
![]() | |
3. |
刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
![]() | |
4. |
李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
![]() | |
5. |
张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
![]() | |
6. |
吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
![]() | |
7. |
芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
![]() | |
8. |
孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 .
![]() | |
9. |
周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .
![]() |