LI Mingming, LI Lu, XIE Xinan, et al. Effect of High Pressure Homogenization on the Structure and Antioxidant Properties of EGCG-OSA Corn Starch Complex[J]. Science and Technology of Food Industry, 2021, 42(23): 20−26. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010022.
Citation: LI Mingming, LI Lu, XIE Xinan, et al. Effect of High Pressure Homogenization on the Structure and Antioxidant Properties of EGCG-OSA Corn Starch Complex[J]. Science and Technology of Food Industry, 2021, 42(23): 20−26. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010022.

Effect of High Pressure Homogenization on the Structure and Antioxidant Properties of EGCG-OSA Corn Starch Complex

More Information
  • Received Date: January 08, 2021
  • Available Online: September 21, 2021
  • Aiming to investigate the effect of high pressure homogenization on EGCG-OSA corn starch complex, EGCG-OSA corn starch complex was prepared by heating, high pressure homogenization and high pressure homogenization followed by heating respectively. Also, Fourier infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) was utilized to characterize its structure and morphology. Rheometer and particle size analyzer was applied to analyze its rheology; and the DPPH and ABTS free radical scavenging rate was measured to compare the oxidation resistance. The research results indicated that the three kinds of complexes had high oxidation resistance, and the decline within the number of days was insignificant. Among these complexes, the one generated by sequential homogenization and heating obtained the highest oxidation resistance, and the DPPH clearance rate after 30 days still reached 89.63%, besides, the ABTS free radical scavenging rate reached 98.66%. According to the infrared and X-ray results, there was no evidence that the composite had any new chemical bonds or functional groups; the rheological results illustrated that the viscosity of the composite after high-pressure homogenization decreased more and its particle size was reduced. In summary, the complex prepared by high pressure homogenization followed by heating has higher oxidation resistance and better storage stability, which provides theoretical and experimental basis for the application of EGCG in the processing and production of starch food.
  • [1]
    彭善丽. 茶多酚-OSA淀粉复合体的营养特性研究[D]. 无锡: 江南大学, 2017

    PENG S L. Study on the nutritional properties of tea polyphenol-OSA starch complex[D]. Wuxi: Jiangnan University, 2017.
    [2]
    HONG Y, YANG J, LIU W, et al. Sustained release of tea polyphenols from a debranched corn starch–xanthan gum complex carrier[J]. LWT,2019,103:325−332. doi: 10.1016/j.lwt.2019.01.014
    [3]
    邹妍, 王力, 王梅, 等. 分子结构对辛烯基琥珀酸淀粉酯荷载多酚行为影响的研究[J]. 食品研究与开发,2019,40(10):50−55. [ZOU Y, WANG L, WANG M, et al. Study on the effect of molecular structure on the behavior of octenyl succinate starch loaded with polyphenols[J]. Food Research and Development,2019,40(10):50−55. doi: 10.3969/j.issn.1005-6521.2019.10.009
    [4]
    刘天棋. 淀粉-茶多酚组合体的构建及其对餐后血糖反应的影响[D]. 无锡: 江南大学, 2018

    LIU T Q. Construction of starch-tea polyphenol combination and its effect on postprandial blood glucose response [D]. Wuxi: Jiangnan University, 2018.
    [5]
    王芳. 以淀粉为基质的EGCG载体化构建及特性研究[D]. 无锡: 江南大学, 2016

    WANG F. The construction and characteristics of EGCG carrier based on starch [D]. Wuxi: Jiangnan University, 2016.
    [6]
    GIUBERTI G, ROCCHETTI G, LUCINI L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview[J]. Current Opinion in Food Science,2020,31:102−113. doi: 10.1016/j.cofs.2020.04.003
    [7]
    PATEL A R, NIJSSE J, VELIKOV K P. Novel polymer-polyphenol beads for encapsulation and microreactor applications[J]. Soft Matter,2011,7(9):4294−4301. doi: 10.1039/c1sm05135k
    [8]
    万芊. 多酚与玉米淀粉的相互作用及其对淀粉消化和加工特性的影响[D]. 无锡: 江南大学, 2018

    WAN Q. The interaction of polyphenols with corn starch and its effect on starch digestion and processing characteristics[D]. Wuxi: Jiangnan University, 2018.
    [9]
    王子宇, 王智颖, 罗港, 等. 高压均质处理对橙汁流变特性的影响[J]. 食品与发酵工业,2021:1−11. [WANG Z Y, WANG Z Y, LUO G, et al. Effect of high pressure homogenization on rheological properties of orange juice[J]. Food and Fermentation Industries,2021:1−11.
    [10]
    CUI J, ZHENG B, LIU Y, et al. Insights into the effect of structural alternations on the digestibility of rice starch-fatty acid complexes prepared by high-pressure homogenization[J]. LWT,2021,136:110294. doi: 10.1016/j.lwt.2020.110294
    [11]
    SENTANDREU E, STINCO C M, VICARIO I M, et al. High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids[J]. Journal of Cleaner Production,2020,262:121325. doi: 10.1016/j.jclepro.2020.121325
    [12]
    郭增旺, 郭亚男, 李柏良, 等. 高压均质条件下大豆蛋白热聚集体结构和乳化特性研究[J]. 农业机械学报,2021:1−20. [GUO Z W, GUO Y N, LI B L, et al. Thermal aggregate structure and emulsification properties of soybean protein under high pressure Homogenization[J]. Transactions of the Chinese Society for Agricultural Machinery,2021:1−20. doi: 10.6041/j.issn.1000-1298.2021.01.001
    [13]
    ZHAO B, WANG B, ZHENG B, et al. Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch-green tea polyphenol complexes[J]. Journal of Functional Foods,2019,57:173−181. doi: 10.1016/j.jff.2019.04.016
    [14]
    冷雪. 茶多酚对改性糯玉米淀粉消化性的影响[D]. 无锡: 江南大学, 2013

    LENG X. The effect of tea polyphenols on the digestibility of modified waxy corn starch[D]. Wuxi: Jiangnan University, 2013.
    [15]
    雷耀兴, 雷丹青, 黄燕军. 茶多酚单体、复合体及其制剂清除活性氧自由基能力的研究[J]. 广西医科大学学报,1994(4):396−398. [LEI Y X, LEI D Q, HUANG Y J. Study on the ability of tea polyphenol monomers, complexes and preparations to scavenge active oxygen free radicals[J]. Journal of Guangxi Medical University,1994(4):396−398.
    [16]
    LIU B, ZHONG F, YOKOYAMA W, et al. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch[J]. Carbohydrate Polymers,2020,247:116667. doi: 10.1016/j.carbpol.2020.116667
    [17]
    赵蓓蓓. 莲子淀粉-茶多酚复合物的制备及理化特性研究[D]. 福州: 福建农林大学, 2019

    ZHAO B B. Preparation and physicochemical properties of lotus seed starch-tea polyphenol complex [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [18]
    LI H, ZHAI F, LI J, et al. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols[J]. International Journal of Biological Macromolecules,2020,166:521−528.
    [19]
    王兴瑞, 陈昀昀, 韩玉泽, 等. 青海亚麻籽总酚含量测定及其抗氧化活性研究[J]. 中国油脂,2020,45(8):121−124. [WANG X R, CHEN Y Y, HAN Y Z, et al. Determination of total phenols in Qinghai flaxseed and its antioxidant activity[J]. China Oils and Fats,2020,45(8):121−124. doi: 10.12166/j.zgyz.1003-7969/2020.08.024
    [20]
    李进才, 刘梦杰, 陈银焕, 等. 模拟消化中藜麦的酚类化合物释放和抗氧化活性[J]. 天津大学学报(自然科学与工程技术版),2020,53(8):785−794. [LI J C, LIU M J, CHEN Y H, et al. Simulated digestion of phenolic compounds release and antioxidant activity of quinoa[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition),2020,53(8):785−794.
    [21]
    薛晓芳, 赵爱玲, 王永康, 等. 枣种质果实黄酮含量及其抗氧化活性分析[J]. 经济林研究,2020,38(3):112−118. [XUE X F, ZHAO A L, WANG Y K, et al. Analysis of flavonoid content and antioxidant activity of jujube germplasm fruits[J]. Economic Forest Research,2020,38(3):112−118.
    [22]
    杜之正. 以余甘果及其提取物为载体提高EGCG生物利用率的研究[D]. 福州: 福建农林大学, 2019

    DU Z Z. Using Phyllanthus emblica and its extract as a carrier to improve the bioavailability of EGCG[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [23]
    贝玉祥, 郭英, 范逸平, 等. 诃子多酚清除活性氧自由基及体外抗氧化作用研究[J]. 云南民族大学学报(自然科学版),2009,18(1):51−54. [BEI Y X, GUO Y, FAN Y P, et al. Study on the scavenging effect of myrobalan polyphenols on active oxygen free radicals and in vitro antioxidant activity[J]. Journal of Yunnan Nationalities University (Natural Science Edition),2009,18(1):51−54.
    [24]
    GUO Z, ZHAO B, CHEN J, et al. Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure[J]. Food Chemistry,2019,297:124992. doi: 10.1016/j.foodchem.2019.124992
    [25]
    WU Y, NIU M, XU H. Pasting behaviors, gel rheological properties, and freeze-thaw stability of rice flour and starch modified by green tea polyphenols[J]. LWT,2020,118:108796. doi: 10.1016/j.lwt.2019.108796
    [26]
    WANG X, LENG X, ZHANG G. The loosening effect of tea polyphenol on the structure of octenyl succinic anhydride modified waxy maize starch[J]. Food Hydrocolloids,2020,99:105367. doi: 10.1016/j.foodhyd.2019.105367
    [27]
    LV Y, ZHANG L, LI M, et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols[J]. International Journal of Biological Macromolecules,2019,129:207−213. doi: 10.1016/j.ijbiomac.2019.02.028
    [28]
    DU J, YANG Z, XU X, et al. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch[J]. Food Hydrocolloids,2019,91:256−262. doi: 10.1016/j.foodhyd.2019.01.035
    [29]
    WU Y, CHEN Z, LI X, et al. Effect of tea polyphenols on the retrogradation of rice starch[J]. Food Research International,2009,42(2):221−225. doi: 10.1016/j.foodres.2008.11.001
    [30]
    景悦, 刘华玲, 史苗苗, 等. 茶多酚/直链淀粉复合物体系的构建及表征[J]. 食品工业,2020,41(2):177−180. [JING Y, LIU H L, SHI M M, et al. Construction and characterization of tea polyphenol/amylose complex system[J]. Food Industry,2020,41(2):177−180.
    [31]
    张智涵. 淀粉与茶多酚共研磨对淀粉理化性质和消化性的影响[D]. 天津: 天津科技大学, 2018

    ZHANG Z H. The effect of co-milling starch and tea polyphenols on the physicochemical properties and digestibility of starch[D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [32]
    LI M, NDIAYE C, CORBIN S, et al. Starch-phenolic complexes are built on physical CH-π interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods[J]. Food Chemistry,2020,308:125577. doi: 10.1016/j.foodchem.2019.125577
    [33]
    HAN X, ZHANG M, ZHANG R, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT,2020,125:109227. doi: 10.1016/j.lwt.2020.109227
  • Cited by

    Periodical cited type(12)

    1. 杨洪焱,何雨淇,牛淼,李雄宇,徐亚文,张方坤,李家华. 不同产地不同贮藏时间普洱熟茶香气成分分析. 食品工业科技. 2025(05): 218-229 . 本站查看
    2. 黄海,张晓洲,罗金龙,胡正军,张拓,戴宇樵,陈泳铭,王迅,周雪. 基于气味活度值法分析炒青绿茶与烘青绿茶的香气特征差异. 贵州农业科学. 2025(02): 112-119 .
    3. 吴应奇,陈婷,黎敏,庞月兰,郭春雨. 不同地区桂北大叶种古树白茶感官及品质成分分析. 食品科技. 2025(02): 105-112 .
    4. 马雪妮,丁小维,张李旭,李健苗. 一株“金花”菌的分离鉴定及其发酵茶叶研究. 食品与发酵工业. 2025(07): 293-299 .
    5. 黄慧清,郑玉成,胡清财,吴晴阳,杨云,欧晓西,赵梦莹,孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学. 2024(01): 101-108 .
    6. 李子怡,王锋,赵玲艳,徐永兵,罗凤莲. 基于HS-SPME-GC-MS和多元统计学分析华容芥菜的特征挥发性风味成分. 中国酿造. 2024(03): 234-242 .
    7. 陈国和,胡腾飞,王乐涯,欧行畅,李勤,黄建安,刘仲华,王超. 基于顶空固相微萃取-气相色谱-嗅闻仪-质谱仪结合气味活力值鉴定槟榔香六堡茶关键香气物质. 食品与发酵工业. 2024(08): 271-277 .
    8. 赵志强,陈罗君,饶雨,徐璐,饶军,雷志勇,张丽,高银祥. 基于HS-SPME-GC-MS对不同等级双井绿茶香气物质的研究. 食品工业科技. 2024(10): 273-281 . 本站查看
    9. 梁贤智,骆妍妃,阳景阳,农玉琴,陈杏,梁光志,陈远权. 不同干燥工艺对金牡丹茶树花品质及挥发性风味成分的影响. 食品工业科技. 2024(15): 253-263 . 本站查看
    10. 杨桂强,李吉生,莫璋红,吴玉钧,吕敏,陆燕. 六堡茶香气成分及检测技术研究进展. 中南农业科技. 2024(08): 247-249 .
    11. 马莹,刘谢缘,王碧生,翁淑燚,李利君,倪辉. 焙火工艺对白芽奇兰茶叶挥发性香气成分的影响. 食品科学. 2024(19): 123-129 .
    12. 徐秀娟,薛云,胡军,白家峰,马骥,孙建生,杨春强,吴彦. 糯米香净油的制备及其热裂解产物. 烟草科技. 2023(10): 70-81 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (219) PDF downloads (38) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return