Citation: | LI Mingming, LI Lu, XIE Xinan, et al. Effect of High Pressure Homogenization on the Structure and Antioxidant Properties of EGCG-OSA Corn Starch Complex[J]. Science and Technology of Food Industry, 2021, 42(23): 20−26. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010022. |
[1] |
彭善丽. 茶多酚-OSA淀粉复合体的营养特性研究[D]. 无锡: 江南大学, 2017
PENG S L. Study on the nutritional properties of tea polyphenol-OSA starch complex[D]. Wuxi: Jiangnan University, 2017.
|
[2] |
HONG Y, YANG J, LIU W, et al. Sustained release of tea polyphenols from a debranched corn starch–xanthan gum complex carrier[J]. LWT,2019,103:325−332. doi: 10.1016/j.lwt.2019.01.014
|
[3] |
邹妍, 王力, 王梅, 等. 分子结构对辛烯基琥珀酸淀粉酯荷载多酚行为影响的研究[J]. 食品研究与开发,2019,40(10):50−55. [ZOU Y, WANG L, WANG M, et al. Study on the effect of molecular structure on the behavior of octenyl succinate starch loaded with polyphenols[J]. Food Research and Development,2019,40(10):50−55. doi: 10.3969/j.issn.1005-6521.2019.10.009
|
[4] |
刘天棋. 淀粉-茶多酚组合体的构建及其对餐后血糖反应的影响[D]. 无锡: 江南大学, 2018
LIU T Q. Construction of starch-tea polyphenol combination and its effect on postprandial blood glucose response [D]. Wuxi: Jiangnan University, 2018.
|
[5] |
王芳. 以淀粉为基质的EGCG载体化构建及特性研究[D]. 无锡: 江南大学, 2016
WANG F. The construction and characteristics of EGCG carrier based on starch [D]. Wuxi: Jiangnan University, 2016.
|
[6] |
GIUBERTI G, ROCCHETTI G, LUCINI L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview[J]. Current Opinion in Food Science,2020,31:102−113. doi: 10.1016/j.cofs.2020.04.003
|
[7] |
PATEL A R, NIJSSE J, VELIKOV K P. Novel polymer-polyphenol beads for encapsulation and microreactor applications[J]. Soft Matter,2011,7(9):4294−4301. doi: 10.1039/c1sm05135k
|
[8] |
万芊. 多酚与玉米淀粉的相互作用及其对淀粉消化和加工特性的影响[D]. 无锡: 江南大学, 2018
WAN Q. The interaction of polyphenols with corn starch and its effect on starch digestion and processing characteristics[D]. Wuxi: Jiangnan University, 2018.
|
[9] |
王子宇, 王智颖, 罗港, 等. 高压均质处理对橙汁流变特性的影响[J]. 食品与发酵工业,2021:1−11. [WANG Z Y, WANG Z Y, LUO G, et al. Effect of high pressure homogenization on rheological properties of orange juice[J]. Food and Fermentation Industries,2021:1−11.
|
[10] |
CUI J, ZHENG B, LIU Y, et al. Insights into the effect of structural alternations on the digestibility of rice starch-fatty acid complexes prepared by high-pressure homogenization[J]. LWT,2021,136:110294. doi: 10.1016/j.lwt.2020.110294
|
[11] |
SENTANDREU E, STINCO C M, VICARIO I M, et al. High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids[J]. Journal of Cleaner Production,2020,262:121325. doi: 10.1016/j.jclepro.2020.121325
|
[12] |
郭增旺, 郭亚男, 李柏良, 等. 高压均质条件下大豆蛋白热聚集体结构和乳化特性研究[J]. 农业机械学报,2021:1−20. [GUO Z W, GUO Y N, LI B L, et al. Thermal aggregate structure and emulsification properties of soybean protein under high pressure Homogenization[J]. Transactions of the Chinese Society for Agricultural Machinery,2021:1−20. doi: 10.6041/j.issn.1000-1298.2021.01.001
|
[13] |
ZHAO B, WANG B, ZHENG B, et al. Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch-green tea polyphenol complexes[J]. Journal of Functional Foods,2019,57:173−181. doi: 10.1016/j.jff.2019.04.016
|
[14] |
冷雪. 茶多酚对改性糯玉米淀粉消化性的影响[D]. 无锡: 江南大学, 2013
LENG X. The effect of tea polyphenols on the digestibility of modified waxy corn starch[D]. Wuxi: Jiangnan University, 2013.
|
[15] |
雷耀兴, 雷丹青, 黄燕军. 茶多酚单体、复合体及其制剂清除活性氧自由基能力的研究[J]. 广西医科大学学报,1994(4):396−398. [LEI Y X, LEI D Q, HUANG Y J. Study on the ability of tea polyphenol monomers, complexes and preparations to scavenge active oxygen free radicals[J]. Journal of Guangxi Medical University,1994(4):396−398.
|
[16] |
LIU B, ZHONG F, YOKOYAMA W, et al. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch[J]. Carbohydrate Polymers,2020,247:116667. doi: 10.1016/j.carbpol.2020.116667
|
[17] |
赵蓓蓓. 莲子淀粉-茶多酚复合物的制备及理化特性研究[D]. 福州: 福建农林大学, 2019
ZHAO B B. Preparation and physicochemical properties of lotus seed starch-tea polyphenol complex [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
|
[18] |
LI H, ZHAI F, LI J, et al. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols[J]. International Journal of Biological Macromolecules,2020,166:521−528.
|
[19] |
王兴瑞, 陈昀昀, 韩玉泽, 等. 青海亚麻籽总酚含量测定及其抗氧化活性研究[J]. 中国油脂,2020,45(8):121−124. [WANG X R, CHEN Y Y, HAN Y Z, et al. Determination of total phenols in Qinghai flaxseed and its antioxidant activity[J]. China Oils and Fats,2020,45(8):121−124. doi: 10.12166/j.zgyz.1003-7969/2020.08.024
|
[20] |
李进才, 刘梦杰, 陈银焕, 等. 模拟消化中藜麦的酚类化合物释放和抗氧化活性[J]. 天津大学学报(自然科学与工程技术版),2020,53(8):785−794. [LI J C, LIU M J, CHEN Y H, et al. Simulated digestion of phenolic compounds release and antioxidant activity of quinoa[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition),2020,53(8):785−794.
|
[21] |
薛晓芳, 赵爱玲, 王永康, 等. 枣种质果实黄酮含量及其抗氧化活性分析[J]. 经济林研究,2020,38(3):112−118. [XUE X F, ZHAO A L, WANG Y K, et al. Analysis of flavonoid content and antioxidant activity of jujube germplasm fruits[J]. Economic Forest Research,2020,38(3):112−118.
|
[22] |
杜之正. 以余甘果及其提取物为载体提高EGCG生物利用率的研究[D]. 福州: 福建农林大学, 2019
DU Z Z. Using Phyllanthus emblica and its extract as a carrier to improve the bioavailability of EGCG[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
|
[23] |
贝玉祥, 郭英, 范逸平, 等. 诃子多酚清除活性氧自由基及体外抗氧化作用研究[J]. 云南民族大学学报(自然科学版),2009,18(1):51−54. [BEI Y X, GUO Y, FAN Y P, et al. Study on the scavenging effect of myrobalan polyphenols on active oxygen free radicals and in vitro antioxidant activity[J]. Journal of Yunnan Nationalities University (Natural Science Edition),2009,18(1):51−54.
|
[24] |
GUO Z, ZHAO B, CHEN J, et al. Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure[J]. Food Chemistry,2019,297:124992. doi: 10.1016/j.foodchem.2019.124992
|
[25] |
WU Y, NIU M, XU H. Pasting behaviors, gel rheological properties, and freeze-thaw stability of rice flour and starch modified by green tea polyphenols[J]. LWT,2020,118:108796. doi: 10.1016/j.lwt.2019.108796
|
[26] |
WANG X, LENG X, ZHANG G. The loosening effect of tea polyphenol on the structure of octenyl succinic anhydride modified waxy maize starch[J]. Food Hydrocolloids,2020,99:105367. doi: 10.1016/j.foodhyd.2019.105367
|
[27] |
LV Y, ZHANG L, LI M, et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols[J]. International Journal of Biological Macromolecules,2019,129:207−213. doi: 10.1016/j.ijbiomac.2019.02.028
|
[28] |
DU J, YANG Z, XU X, et al. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch[J]. Food Hydrocolloids,2019,91:256−262. doi: 10.1016/j.foodhyd.2019.01.035
|
[29] |
WU Y, CHEN Z, LI X, et al. Effect of tea polyphenols on the retrogradation of rice starch[J]. Food Research International,2009,42(2):221−225. doi: 10.1016/j.foodres.2008.11.001
|
[30] |
景悦, 刘华玲, 史苗苗, 等. 茶多酚/直链淀粉复合物体系的构建及表征[J]. 食品工业,2020,41(2):177−180. [JING Y, LIU H L, SHI M M, et al. Construction and characterization of tea polyphenol/amylose complex system[J]. Food Industry,2020,41(2):177−180.
|
[31] |
张智涵. 淀粉与茶多酚共研磨对淀粉理化性质和消化性的影响[D]. 天津: 天津科技大学, 2018
ZHANG Z H. The effect of co-milling starch and tea polyphenols on the physicochemical properties and digestibility of starch[D]. Tianjin: Tianjin University of Science and Technology, 2018.
|
[32] |
LI M, NDIAYE C, CORBIN S, et al. Starch-phenolic complexes are built on physical CH-π interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods[J]. Food Chemistry,2020,308:125577. doi: 10.1016/j.foodchem.2019.125577
|
[33] |
HAN X, ZHANG M, ZHANG R, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT,2020,125:109227. doi: 10.1016/j.lwt.2020.109227
|
1. |
杨洪焱,何雨淇,牛淼,李雄宇,徐亚文,张方坤,李家华. 不同产地不同贮藏时间普洱熟茶香气成分分析. 食品工业科技. 2025(05): 218-229 .
![]() | |
2. |
黄海,张晓洲,罗金龙,胡正军,张拓,戴宇樵,陈泳铭,王迅,周雪. 基于气味活度值法分析炒青绿茶与烘青绿茶的香气特征差异. 贵州农业科学. 2025(02): 112-119 .
![]() | |
3. |
吴应奇,陈婷,黎敏,庞月兰,郭春雨. 不同地区桂北大叶种古树白茶感官及品质成分分析. 食品科技. 2025(02): 105-112 .
![]() | |
4. |
马雪妮,丁小维,张李旭,李健苗. 一株“金花”菌的分离鉴定及其发酵茶叶研究. 食品与发酵工业. 2025(07): 293-299 .
![]() | |
5. |
黄慧清,郑玉成,胡清财,吴晴阳,杨云,欧晓西,赵梦莹,孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学. 2024(01): 101-108 .
![]() | |
6. |
李子怡,王锋,赵玲艳,徐永兵,罗凤莲. 基于HS-SPME-GC-MS和多元统计学分析华容芥菜的特征挥发性风味成分. 中国酿造. 2024(03): 234-242 .
![]() | |
7. |
陈国和,胡腾飞,王乐涯,欧行畅,李勤,黄建安,刘仲华,王超. 基于顶空固相微萃取-气相色谱-嗅闻仪-质谱仪结合气味活力值鉴定槟榔香六堡茶关键香气物质. 食品与发酵工业. 2024(08): 271-277 .
![]() | |
8. |
赵志强,陈罗君,饶雨,徐璐,饶军,雷志勇,张丽,高银祥. 基于HS-SPME-GC-MS对不同等级双井绿茶香气物质的研究. 食品工业科技. 2024(10): 273-281 .
![]() | |
9. |
梁贤智,骆妍妃,阳景阳,农玉琴,陈杏,梁光志,陈远权. 不同干燥工艺对金牡丹茶树花品质及挥发性风味成分的影响. 食品工业科技. 2024(15): 253-263 .
![]() | |
10. |
杨桂强,李吉生,莫璋红,吴玉钧,吕敏,陆燕. 六堡茶香气成分及检测技术研究进展. 中南农业科技. 2024(08): 247-249 .
![]() | |
11. |
马莹,刘谢缘,王碧生,翁淑燚,李利君,倪辉. 焙火工艺对白芽奇兰茶叶挥发性香气成分的影响. 食品科学. 2024(19): 123-129 .
![]() | |
12. |
徐秀娟,薛云,胡军,白家峰,马骥,孙建生,杨春强,吴彦. 糯米香净油的制备及其热裂解产物. 烟草科技. 2023(10): 70-81 .
![]() |