REN Rong, ZHANG Anqi, ZHANG Fuxin, et al. Effect of Ultrasonic Treatment on the Bactericidal Effect of Escherichia coli and Staphylococcus aureus in Goat Milk[J]. Science and Technology of Food Industry, 2021, 42(18): 126−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120270.
Citation: REN Rong, ZHANG Anqi, ZHANG Fuxin, et al. Effect of Ultrasonic Treatment on the Bactericidal Effect of Escherichia coli and Staphylococcus aureus in Goat Milk[J]. Science and Technology of Food Industry, 2021, 42(18): 126−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120270.

Effect of Ultrasonic Treatment on the Bactericidal Effect of Escherichia coli and Staphylococcus aureus in Goat Milk

More Information
  • Received Date: December 29, 2020
  • Available Online: July 15, 2021
  • The bactericidal effect of ultrasonic treatment on Escherichia coli and Staphylococcus aureus in fresh goat milk were studied in this paper, which provided reference for the non-thermal sterilization method and product development of goat milk. Based on a single factor experiment, the Box-Behnken experimental design was used to study the effects of ultrasonic power, temperature and time on the sterilization effect of Escherichia coli and Staphylococcus aureus in goat milk, and the sterilization logarithm of E. coli and S. aureus was taken as response value, the ultrasonic processing conditions were optimized through response surface analysis, and also studied the destruction of bacterial cells of the two strains by ultrasonic and pasteurization treatment and the changes of colony numbers during storage period. The results showed that the optimal conditions were ultrasonic power 530 W, temperature 60 ℃, and time 30 min. Under these conditions, the sterilization logarithms values for E. coli and S. aureus were 7.55 and 6.53. Compared with pasteurization, ultrasonic treatment had grater sterilization effect that could destroy the cell surface structure of E. coli and S. aureus to a greater extent, and extended the storage period of goat milk from 14 d to 21 d after pasteurization, and the quality requirements still met national standards.
  • [1]
    刘翠, 潘健存, 李媛媛, 等. 人乳营养成分及其生理功能[J]. 食品工业科技,2019,40(1):286−291. [Liu C, Pan J C, Li Y Y, et al. Nutrients and physiological functions of human milk[J]. Science and Technology of Food Industry,2019,40(1):286−291.
    [2]
    李龙柱, 张富新, 贾润芳, 等. 不同哺乳动物乳中主要营养成分比较的研究进展[J]. 食品工业科技,2012,33(19):396−400. [Li L Z, Zhang F X, Jia R F, et al. Research progress of comparison of major nutritional components for different mammalian milk[J]. Science and Technology of Food Industry,2012,33(19):396−400.
    [3]
    李贺, 马莺. 羊乳营养及其功能性特性[J]. 中国乳品工业,2017,45(1):29−33, 49. [Li H, Ma Y. Nutrition and functional properties of goat milk[J]. China Dairy Industry,2017,45(1):29−33, 49. doi: 10.3969/j.issn.1001-2230.2017.01.008
    [4]
    马玉琴, 宋礼, 崔广智, 等. 羊乳作为婴幼儿配方乳粉乳源的研究进展[J]. 乳业科学与技术,2019,42(2):50−54. [Ma Y Q, Song L, Cui G Z, et al. Recent advances in goat milk as a milk source for infant formula[J]. Journal of Dairy Science and Technology,2019,42(2):50−54.
    [5]
    De Souza J V, Dias F S. Protective, technological, and functional properties of select autochthonous lactic acid bacteria from goat dairy products[J]. Current Opinion in Food Science,2017,13:1−9.
    [6]
    Crotta M, Paterlini F, Rizzi R, et al. Consumers’ behavior in quantitative microbial risk assessment for pathogens in raw milk: Incorporation of the likelihood of consumption as a function of storage time and temperature[J]. Journal of dairy science,2016,99(2):1029−1038. doi: 10.3168/jds.2015-10175
    [7]
    Srimagal A, Ramesh T, Sahu J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−385. doi: 10.1016/j.lwt.2016.04.028
    [8]
    Walter L, Knight G, Ng S Y, et al. Kinetic models for pulsed electric field and thermal inactivation of Escherichia coli and Pseudomonas fluorescens in whole milk[J]. International Dairy Journal,2016,57:7−14. doi: 10.1016/j.idairyj.2016.01.027
    [9]
    Claeys W L, Van Loey A M, Hendrickx M E. Intrinsic time temperature integrators for heat treatment of milk[J]. Trends in Food Science & Technology,2002,13(9-10):293−311.
    [10]
    Choudhary R, Bandla S. Ultraviolet pasteurization for food industry[J]. International Journal of Food Science & Nutrition Engineering,2012,2(1):12−15.
    [11]
    樊丽华, 侯福荣, 马晓彬, 等. 超声波及其辅助灭菌技术在食品微生物安全控制中的应用[J]. 中国食品学报,2020,20(7):326−336. [Fan L H, Hou F R, Ma X B, et al. The application of ultrasound and assistant sterilization technologies in food microbiological control: A review[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):326−336.
    [12]
    张琪, 朱丹, 牛广财, 等. 不同杀菌方式对沙棘果浆品质的影响[J]. 食品与发酵工业,2019,45(19):166−172. [Zhang Q, Zhu D, Niu G C, et al. Effects of different sterilization methods on fruit pulp quality of sea buckthorn[J]. Food and Fermentation Industries,2019,45(19):166−172.
    [13]
    Jalilzadeh A, Hesari J, Peighambardoust S H, et al. The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese[J]. Journal of Dairy Science,2018,101(7):5809−5820. doi: 10.3168/jds.2017-14352
    [14]
    Monteiro S H M C, Silva E K, Alvarenga V O, et al. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage[J]. Ultrasonics Sonochemistry,2018,42:1−10. doi: 10.1016/j.ultsonch.2017.11.015
    [15]
    Sfakianakis P, Topakas E, Tzia C. Comparative study on high-intensity ultrasound and pressure milk homogenization: Effect on the kinetics of yogurt fermentation process[J]. Food and Bioprocess Technology,2015,8(3):548−557. doi: 10.1007/s11947-014-1412-9
    [16]
    董自艳, 戴翚, 马仕洪, 等. 紫外-可见分光光度法快速确定细菌菌液的浓度[J]. 中国药品标准,2014(2):120−121. [Dong Z Y, Dai H, Ma S H, et al. Bacterial counts by UV-vis spectrophotometry[J]. Drug Standards of China,2014(2):120−121.
    [17]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.3-2016食品微生物学检验 大肠菌群计数[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 4789.3-2016 Food microbiology inspection, counting of coliform[S]. Beijing: China Standards Press, 2016.
    [18]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.10-2016食品微生物学检验 金黄色葡萄球菌检验[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 4789.10-2016 Food microbiology inspection, inspection of Staphylococcus aureus[S]. Beijing: China Standards Press, 2016.
    [19]
    胡春辉, 徐青, 孙璇, 等. 几种典型扫描电镜生物样本制备[J]. 湖北农业科学,2016(20):5389−5392. [Hu C H, Xu Q, Sun X, et al. Several biological typical samples preparation methods of scanning electron microscope[J]. Hubei Agricultural Sciences,2016(20):5389−5392.
    [20]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.2-2016食品微生物学检验菌落总数测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 4789.2-2016 Food microbiology inspection, determination of the total number of bacterial colonies[S]. Beijing: China Standard Press, 2016.
    [21]
    林祎, 丁甜, 刘东红, 等. 声热复合对沙门氏菌的杀菌效果研究[J]. 食品工业科技,2017,38(7):121−126. [Lin Y, Ding T, Liu D H, et al. Sterilization effects of thermo-sonication treatment on Salmonella[J]. Science and Technology of Food Industry,2017,38(7):121−126.
    [22]
    薛海晓, 芦晶, 张书文, 等. 生鲜羊乳脂肪酶活力研究[J]. 中国食品学报,2014,14(12):13−17. [Xue H X, Lu J, Zhang S W, et al. Studies on lipase activity of fresh goat milk[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(12):13−17.
    [23]
    徐连应, 侯院林, 王毕妮, 等. 加工方式对羊乳中类胰岛素生长因子I浓度的影响[J]. 食品与发酵工业,2017,43(2):62−66. [Xu L Y, Hou Y L, Wang B N, et al. Effects of processing modes on the concentration of insulin-like growth factor-I in goat milk[J]. Food and Fermentation Industries,2017,43(2):62−66.
    [24]
    Tidona F, Sekse C, Criscione A, et al. Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes[J]. International Dairy Journal,2011,21(3):158−165. doi: 10.1016/j.idairyj.2010.10.008
    [25]
    Yolmeh M, Jafari S M. Applications of response surface methodology in the food industry processes[J]. Food and Bioprocess Technology,2017,10(3):413−433. doi: 10.1007/s11947-016-1855-2
    [26]
    Hong E J, Kang D H. Effect of sequential dry heat and hydrogen peroxide treatment on inactivation of Salmonella typhimurium on alfalfa seeds and seeds germination[J]. Food Microbiology,2016,53:9−14. doi: 10.1016/j.fm.2015.08.002
    [27]
    Khanal S N, Anand S, Muthukumarappan K, et al. Inactivation of thermoduric aerobic sporeformers in milk by ultrasonication[J]. Food Control,2014,37:232−239. doi: 10.1016/j.foodcont.2013.09.022
    [28]
    钱静亚, 马海乐, 李树君, 等. 温度、 超声、nisin协同脉冲磁场杀灭枯草芽孢杆菌的研究[J]. 现代食品科技,2013,29(12):2970−2974. [Qian J Y, Ma H L, Li S J, et al. Inactivation of Bacillus subtilis by pulsed magnetic field combined with temperature, ultrasonic, and nisin[J]. Modern Food Science and Technology,2013,29(12):2970−2974.
    [29]
    盖作启, 李冰, 李琳, 等. 非热杀菌技术在牛奶加工中的研究进展[J]. 食品工业科技,2009(1):329−332. [Gai Z Q, Li B, Li L, et al. Advancement of non-thermal sterilization technologies in milk industry[J]. Science and Technology of Food Industry,2009(1):329−332.
    [30]
    Bermúdez-Aguirre D, Barbosa-Cánovas G V. Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication[J]. Innovative Food Science & Emerging Technologies,2008,9(2):176−185.
    [31]
    Bermúdez-Aguirre D, Mawson R, Versteeg K, et al. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments[J]. Journal of Food Quality,2009,32(3):283−302. doi: 10.1111/j.1745-4557.2009.00250.x
    [32]
    林祎. 声热复合处理对液态乳中致病菌的杀菌效果与理化特性影响研究[D]. 浙江: 浙江大学, 2018.

    Lin Y. Effect of thermo-sonication treatment on pathogens inactivation and physicochemical properties of liquid milk[D]. Zhejiang: Zhejiang University, 2018.
    [33]
    肖容雍, 赵鹤飞, 李铭. 常温即食食品的主要杀菌技术研究进展[J]. 农产品加工,2018(12):64−69. [Xiao R Y, Zhao H F, Li M. Advances in main sterilization technologies for ready-to-eat food[J]. Farm Products Processing,2018(12):64−69.
    [34]
    付丽, 赵艳, 申晓琳, 等. 超声波处理对鲜牛乳均质效果的影响[J]. 现代牧业,2019,3(4):15−21. [Fu L, Zhao Y, Shen X L, et al. Effect of ultrasonic treatment on homogenization of fresh milk[J]. Modern Animal Husbandry,2019,3(4):15−21. doi: 10.3969/j.issn.1008-3111.2019.04.004
  • Cited by

    Periodical cited type(27)

    1. 戴明云,李斌,张朝阳,白富瑾,肖伟. 螺旋藻生长影响因素及功能特性应用研究进展. 现代农业科技. 2025(01): 161-165+179 .
    2. 李雪贤,刘洋,皮杰,桂雨婷,陆娟娟. 螺旋藻的主要成分及生理功能研究进展. 水产养殖. 2025(02): 37-42 .
    3. 韩佩,夏嵩,闫冰,姜钦亮,王一雯. 极大螺旋藻对四氧嘧啶性糖尿病小鼠的降血糖作用. 食品研究与开发. 2025(09): 44-51 .
    4. 吴朋徽,刘耀,张磊,肖芃颖,张玥. 微藻两阶段培养技术研究进展. 微生物学通报. 2024(01): 1-16 .
    5. 姜梦云,刘旭,衣然. 4种前处理方法-原子荧光光谱法测定螺旋藻中总砷含量. 食品安全导刊. 2024(03): 56-58 .
    6. 孙博,武晋海,李金凤,赵佳敏,刘金桃,黄凤丽. 螺旋藻口服液制备的工艺优化. 食品安全导刊. 2024(08): 127-131+135 .
    7. 唐魁延,龚艺松,田冬青,张晓宇,聂远洋,李波. 螺旋藻豆腐的研制开发. 河南科技学院学报(自然科学版). 2024(04): 15-27 .
    8. 薛宪辉,李思雨,郭睿,崔文凯,纪蓓. 螺旋藻风味酱的发酵工艺研究. 中国调味品. 2024(08): 69-73 .
    9. 王丽梅,西妮,穆文静,苏小军,张永明. 基于Cite Space对螺旋藻藻蓝蛋白的研究进展与热点分析. 食品与发酵工业. 2024(16): 313-323 .
    10. 宋盈萱,尹馨一,刘盈萱. 螺旋藻营养成分及生物活性研究进展. 食品安全导刊. 2024(27): 178-182 .
    11. 曾巧辉,余杏同,林妙銮. 螺旋藻蛋白-原花青素稳定亚麻籽油品质的研究. 佛山科学技术学院学报(自然科学版). 2024(05): 54-68 .
    12. 杨正磊,冯鑫,尹淑涛. 微藻资源概述及微藻多糖的生物活性研究进展. 中国食物与营养. 2024(09): 58-66 .
    13. 陈慧桢,吕莹果,陈洁,李雪琴. 螺旋藻方便面片制备工艺优化. 粮食与油脂. 2024(11): 135-142+162 .
    14. 柯善文,习向玉,陈翊可,张官鹏,宋富艳,韩栋敏,苏蓉,李晓雪,牛鑫,单华佳,梁倩倩. PDA培养基中添加不同有机氮源物质对黑木耳退化菌种复壮效果的影响. 山东农业科学. 2024(11): 121-126 .
    15. 袁泽文,高旭芳,田益玲. 响应面法优化乙酸锌对螺旋藻护色的研究. 粮食与油脂. 2023(04): 137-140 .
    16. 米顺利,竹烨,张艺,黄晓菊,蒋心怡,易湘茜. 螺旋藻复配代餐粉的研制. 保鲜与加工. 2023(07): 43-49 .
    17. 李平,吕莹果,李雪琴,陈洁. 螺旋藻粉对面团流变性质及面筋结构的影响. 食品科学. 2023(14): 63-71 .
    18. 王志忠,穆洁,巩东辉,郭彩凤,王志国,宝俊刚. 钝顶螺旋藻与五种常见食物营养成分对比分析. 食品与发酵科技. 2023(04): 111-115+121 .
    19. 郭旭,魏登枭,钟彩荣,兰英,何勇锦,陈必链. 正己烷与氯化钙介导法联产提取未破壁螺旋藻的藻蓝蛋白和油脂. 食品与发酵工业. 2023(17): 202-208 .
    20. 魏登,李美善,刘艳霞,金永燮,佟立爽. 精酿绿啤加工工艺优化及其挥发性风味鉴定分析. 中国食品添加剂. 2023(10): 217-225 .
    21. 魏登,刘艳霞,金永燮,佟立爽. 菠菜螺旋藻复合精酿小麦绿啤挥发性香气表征研究. 食品安全导刊. 2023(30): 88-91 .
    22. 吴慧. 螺旋藻曲奇饼干制作工艺的研究. 食品安全导刊. 2022(04): 128-131+135 .
    23. 付雨,姜雨,王进博,张铂瑾,宋宸,孙明霞. 螺旋藻类保健食品批准情况及问题. 食品与机械. 2022(08): 1-6+13 .
    24. 李青卓,张楠,梅兴国,吴基良. 新鲜螺旋藻中β-胡萝卜素提取与测定. 湖北科技学院学报(医学版). 2022(04): 287-291 .
    25. 刘璐璐,陈玟璇,刘小慧,李世乐,许志浩,陈洪彬,郑宗平,王宝贝. 雨生红球藻对戚风蛋糕品质的影响及其虾青素稳定性. 食品工业科技. 2022(19): 76-83 . 本站查看
    26. 佟立爽,王晏驰,周娜,李美善,魏登. 不同温度条件下精酿绿啤二次发酵的挥发性风味差异分析. 中国食品添加剂. 2022(11): 9-17 .
    27. 张春艳,张震,仇钧仪,初宇轩,彭磊磊,罗鹏,陈成勋. 饲料添加复合氨基酸对锦鲤生长和生理生化指标的影响. 经济动物学报. 2022(04): 261-267 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (249) PDF downloads (29) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return