ZHANG Erhao, ZHAO Rundong, YIN Xiu, et al. Analysis of Fungal Community Composition of Grape Surfaces and Rhizosphere Soil in Different Producing Areas in Tibet[J]. Science and Technology of Food Industry, 2021, 42(16): 106−111. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120225.
Citation: ZHANG Erhao, ZHAO Rundong, YIN Xiu, et al. Analysis of Fungal Community Composition of Grape Surfaces and Rhizosphere Soil in Different Producing Areas in Tibet[J]. Science and Technology of Food Industry, 2021, 42(16): 106−111. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120225.

Analysis of Fungal Community Composition of Grape Surfaces and Rhizosphere Soil in Different Producing Areas in Tibet

More Information
  • Received Date: December 24, 2020
  • Available Online: June 07, 2021
  • To reveal the difference and diversity of fungal community structure on the surface of grape and rhizosphere soil from the different areas in Tibet, high-throughput sequencing technology was used to analyze the fungal diversity and community structure in grape and rhizosphere soil samples collected from Mangkang and Linzhi in Tibet. The results showed that the rhizosphere soil in Mangkang had a highest diversity of fungi, while the lowest on Linzhi grape surface. Ascomycota was the dominant phylum at phyla level, accounting for 76.06%~99.60%. At genus level, Cladosporium and Hanseniaspora were the dominant genus in LG and MG, respectively, accounting for 64.43% and 31.59%; while the dominant genus of LS and MS were Fusarium and Mortierella, respectively, accounting for 50.02% and 20.16%. Principal component analysis showed that the fungal community structure was significantly different in different samples, and the fungal community structure of grape epidermis and rhizosphere soil was similar in the different area. Redundancy analysis (RDA) showed that TK, pH, TN, TP and AN had a great influence on fungal community, but the effect of EC and SOM was not obvious. In conclusion, the surface of grape and rhizosphere soil microbial diversity from the different areas in Tibet were very rich, the fungal community structure was significantly similar in two areas. The study of grape and rhizosphere microbial diversity in Tibet could provide a theoretical basis for the utilization and development of characteristic microorganisms in this area.
  • [1]
    张世伟. 酿酒葡萄微生物群落多样性及其氮代谢通量研究[D]. 北京: 中国矿业大学, 2018.
    [2]
    Lilia C C, Paul G D, Ben F, et al. Linking plant nutritional status to plant-microbe interactions[J]. PLoS One,2013,8(7):e68555. doi: 10.1371/journal.pone.0068555
    [3]
    Morgan J A W, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany,2005,56(417):1729−1739. doi: 10.1093/jxb/eri205
    [4]
    周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用[J]. 生物多样性,2007(2):162−171. doi: 10.3321/j.issn:1005-0094.2007.02.007
    [5]
    Renouf V, Claisse O, Lonvaud-Funel A. Inventory and monitoring of wine microbial consortia[J]. Applied Microbiology & Biotechnology,2007,75(1):149.
    [6]
    Bedriana R P, Queipo A L, Valles BS. Screening of enzymatic activities in non-saccharomyces cider yeasts[J]. Journal of Food Biochemistry,2012,36(6):683−689. doi: 10.1111/j.1745-4514.2011.00583.x
    [7]
    Bokulich N A, Joseph C M, Allen G, et al. Next-Generation Sequencing reveals significant bacterial diversity of botrytized wine[J]. PloS one,2013,7(5):e36357.
    [8]
    魏玉洁, 邹弯, 马文瑞, 等. 应用高通量测序技术研究新疆产区葡萄果实、叶片及果园土壤微生物多样性[J]. 食品科学,2018,39(6):162−170. doi: 10.7506/spkx1002-6630-201806026
    [9]
    王伟, 布丽根·加冷别克, 胡晓东, 等. 基于高通量测序技术的酿酒葡萄产区土壤微生物多样性[J]. 新疆农业科学,2020,57(5):859−868.
    [10]
    杨敏, 殷绒, 张国涛, 等. 基于高通量测序技术的香格里拉葡萄酒产区根际微生物多样性研究[J]. 云南农业大学学报(自然科学),2020,35(3):392−400.
    [11]
    张世伟, 陈曦, 钟其顶, 等. 不同品种酿酒葡萄表皮微生物群落多样性分析[J]. 生物技术通报,2017,33(3):128−137.
    [12]
    Martins G, Lauga B, Miot-Sertier C, et al. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations[J]. PloS One,2013,8(8):e73013. doi: 10.1371/journal.pone.0073013
    [13]
    Wu L, Wen C, Qin Y, et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis[J]. BMC Microbiol.,2015,15(1):125. doi: 10.1186/s12866-015-0450-4
    [14]
    You J, Wu G, Ren F, et al. Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing[J]. Applied Microbiology & Biotechnology,2016,100(3):1469−1478.
    [15]
    苏宝玲, 韩士杰, 王建国. 根际微域研究中土样采集方法的研究进展[J]. 应用生态学报,2000, 11(3):477−480. doi: 10.3321/j.issn:1001-9332.2000.03.036
    [16]
    鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 1999.
    [17]
    Wawrik B, Kerkhof L, Kukor J, et al. Effect of different carbon sources on community composition of bacterial enrichments from soil[J]. Applied and Environmental Microbiology,2005,71(11):6776−6783. doi: 10.1128/AEM.71.11.6776-6783.2005
    [18]
    Pinto C, Pinho D, Sousa S, et al. Unravelling the diversity of grapevine microbiome[J]. PLoS One,2014,9(1):85622. doi: 10.1371/journal.pone.0085622
    [19]
    Stevanato P, Bertaggia M, Stellin F. Soil biological and biochemical traits linked to nutritional status in grapevine[J]. Journal of Soil Science and Plant Nutrition,2014,14(3):469−479.
    [20]
    彭玉娇, 崔学宇, 覃礼蒙, 等. 不同地区沙田柚果园土壤细菌群落结构和多样性分析[J]. 四川农业大学学报,2020, 38(6):715−722.
    [21]
    Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils[J]. Environmental microbiology,2011,13(6):1642−1654. doi: 10.1111/j.1462-2920.2011.02480.x
    [22]
    Zubek S, Stefanowicz A M, Blaszkowski J, et al. Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants[J]. Applied Soil Ecology,2012,59:106−115. doi: 10.1016/j.apsoil.2012.04.008
    [23]
    Wei M, Zhuge Y P, Lou Y H, et al. Effects of fertilization on xanthoceras sorbifolia bunge growth and soil enzyme activities[J]. Journal of Soil & Water Conservation,2010,24(2):237−240.
    [24]
    Martins G, Vallance J, Mercier A, et al. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process[J]. Int J Food Microbiol,2014,177(3):21−28.
    [25]
    赵昱, 李静媛, 解万翠, 等. 四个不同产区酿酒葡萄果皮微生物多样性的研究[J/OL]. 食品与发酵工业: 1−13.DOI: 10.13995/j.cnki.11-1802/ts.025474.
    [26]
    Kamma M, Mburu H, Blanchart E. Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya[J]. Biology and Fertility of Soils,2011,47(3):315−321. doi: 10.1007/s00374-011-0539-3
    [27]
    陈伟, 姜中武, 胡艳丽, 等. 苹果园土壤微生物生态特征研究[J]. 水土保持学报,2008,22(3):168−171. doi: 10.3321/j.issn:1009-2242.2008.03.034
    [28]
    张翔, 朱洪勋, 孙春河, 等. 长期施肥对土壤微生物和腐殖质组分的影响[J]. 华北农学报,1998,13(2):87−92.
  • Cited by

    Periodical cited type(7)

    1. 曾璐瑶,劳梦甜,王海滨,王琦,彭利娟,路洪艳,黄锦荣. 复配保鲜剂对冷藏加州鲈鱼片品质特性的影响. 食品工业科技. 2024(16): 328-339 . 本站查看
    2. 吴晓龙,涂宗财,胡月明,王旭梅,王辉. 不同高温处理方式对草鱼肉理化性质及滋味品质的影响. 食品工业科技. 2024(19): 84-93 . 本站查看
    3. 陈泳琪,柴向华,吴克刚,段雪娟,李慧怡,张潼,邹冬锌. 香辛料精油结合真空包装对草鱼肉的低温保鲜研究. 食品与发酵工业. 2024(18): 233-239 .
    4. 赵佳莹,唐善虎,李思宁,陈腊梅,李巧艳. 香蕉花提取物对牦牛肉自然发酵香肠蛋白质氧化的影响. 食品科学. 2023(10): 90-99 .
    5. 刘裕,徐佳美,李金玲,李鹏鹏,马晶晶,耿志明,王道营,徐为民. 传统咸肉加工过程中羟基十八碳二烯酸的变化及其与脂肪氧化的关系. 食品工业科技. 2023(13): 79-84 . 本站查看
    6. 潘创,马静蓉,李亚会,杨贤庆. 水产品低温保藏过程中色泽劣化及护色的研究. 食品与发酵工业. 2023(12): 301-308 .
    7. 贾俊琦,张悦,林慧敏,张宾. 2种乌贼冻藏期间品质及肌原纤维蛋白功能特性变化. 食品工业科技. 2023(20): 380-388 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return