XU Xinle, LIU Tingting, ZHANG Shanshan, et al. Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus[J]. Science and Technology of Food Industry, 2021, 42(18): 167−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120194.
Citation: XU Xinle, LIU Tingting, ZHANG Shanshan, et al. Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus[J]. Science and Technology of Food Industry, 2021, 42(18): 167−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120194.

Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus

More Information
  • Received Date: December 22, 2020
  • Available Online: July 16, 2021
  • Took the residue left after extracting the polysaccharide and protein from Hericium erinaceus (HE) as raw material, orthogonal experiment was used to optimize the best process for preparing high-quality Hericium erinaceus dietary fiber (HE-DF2) by ultrasound-microwave assisted enzymatic method (UMAE), and its structure and physicochemical properties were analyzed. The results showed that when the material particle size was 80 meshes, the enzyme dosage was 3%, the microwave temperature was 55 ℃, the ultrasonic power was 300 W, and the enzymolysis time was 75 min, the SDF content in HE-DF2 was 12.89%±0.12%, and the oil holding capacity was (2.05±0.01) g/g, cholesterol adsorption capacity was (36.84±0.59) mg/g. Compared with the common Hericium erinaceus dietary fiber (he-df1) prepared with reference to GB 5009.88-2014 determination of dietary fiber in food, the internal structure of HE-DF2 changed, producing more hydrophilic groups, and its water holding capacity, oil holding capacity, binding water capacity, swelling capacity and cholesterol adsorption capacity were significantly improved, and it satisfied the requirements of high-quality dietary fiber. It showed that UMAE would be beneficial to the improvement of the functional properties of Hericium erinaceus dietary fiber.
  • [1]
    Liu X, Ren Z, Yu R, et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J]. International Journal of Biological Macromolecules,2020:166.
    [2]
    丁志超. 猴头菇活性多糖的制备、理化特性及其降血糖作用研究[D]. 镇江: 江苏大学, 2019.

    Ding Z C. Preparation, physicochemical propreties and hypoglycemic activities of polysaccharides from Hericium erinaceus[D]. Zhenjiang: Jiangsu University, 2019.
    [3]
    Wang X Y, Yin J Y, Nie S P, et al. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice[J]. International Journal of Biological Macromolecules,2018:S0141813017321463.
    [4]
    郑超群. 基于肠道菌群靶点的猴头菌蛋白免疫活性研究[D]. 广州: 广州中医药大学, 2017.

    Zheng C Q. Evaluate the Immunomodulatory activity of a fungal protein extracted from Hericium erinaceus based on gut microbiota[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2017.
    [5]
    Liao J, Huang H. A fungal chitin derived from Hericium erinaceus residue: Dissolution, gelation and characterization[J]. International Journal of Biological Macromolecules,2020,152:456−464. doi: 10.1016/j.ijbiomac.2020.02.309
    [6]
    Liao J, Huang H. Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures[J]. International Journal of Biological Macromolecules,2019.
    [7]
    李聪, 王稳航. 食用菌膳食纤维研究的新进展[J]. 中国食品添加剂,2015(10):159−164. [Li C, Wang W H. New research advances in mushroom based dietary fiber[J]. China Food Additives,2015(10):159−164. doi: 10.3969/j.issn.1006-2513.2015.10.020
    [8]
    陈龙, 郭晓晖, 李富华, 等. 食用菌膳食纤维功能特性及其应用研究进展[J]. 食品科学,2012,33(11):303−307. [Chen L, Guo X H, Li F H, et al. Research progress on the function and application of dietary fiber from edible fungi[J]. Food Science,2012,33(11):303−307.
    [9]
    Cheung, Peter C K. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits[J]. Food Science & Human Wellness,2013,2(3-4):162−166.
    [10]
    郑建仙. 功能性食品(第二卷)[M]. 北京: 中国轻工业出版社, 1999: 50-65.

    Zheng J X. Functional food(volume 2)[M]. Beijing: China Light Industry Press, 1999: 50-65.
    [11]
    Guerrero P, Beatty E, Kerry J P, et al. Extrusion of soy protein with gelatin and sugars at low moisture content[J]. Journal of Food Engineering,2012,110(1):53−59. doi: 10.1016/j.jfoodeng.2011.12.009
    [12]
    李西腾. 响应面法优化鸡腿菇可溶性膳食纤维提取工艺[J]. 中国食品添加剂,2018(11):125−130. [Li X T. Optimization of extraction of soluble dietary fiber from Coprinus comatus by response surface methodology[J]. China Food Additives,2018(11):125−130. doi: 10.3969/j.issn.1006-2513.2018.11.015
    [13]
    Xue Z, Ma Q, Guo Q, et al. Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues[J]. Food Bioence,2019,32:100452.
    [14]
    刘学成. 金针菇膳食纤维提取、改性及应用研究[D]. 泰安: 山东农业大学, 2020.

    Liu X C. Study on extraction, modification and application of dietary fiber from Flammulina velutipes[D]. Taian: Shandong Agricultural University, 2020.
    [15]
    文攀, 裴志胜, 朱婷婷, 等. 黄皮果肉可溶性膳食纤维制备工艺优化及单糖组成和结构表征[J]. 食品工业科技,2020,41(21):29−36. [Wen P, Pei Z S, Zhu T T, et al. Preparation technology optimization of soluble dietary fiber and composition and structure characterization of monosaccharide from Clausena lansiu Sarcocarp[J]. Science and Technology of Food Industry,2020,41(21):29−36.
    [16]
    Wu F, Zhou C, Zhou D, et al. Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity[J]. Journal of Functional Foods,2017,37:574−585. doi: 10.1016/j.jff.2017.08.030
    [17]
    吾哈丽妮萨·麦麦提托合提, 帕尔哈提·柔孜, 杨晓君, 等. 响应面优化马骨髓蛋白的提取工艺及其抗氧化活性研究[J]. 食品工业科技,2020,2020, 42(12):151−159. [Wugulnisa Mamattohti, Parhat Rozi, Yang X J, et al. Extraction technology optimization of horse bone marrow protein by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry,2020,2020, 42(12):151−159.
    [18]
    张艳荣, 卜佳莹, 杨小盈, 等. 玉米膳食纤维挤出功能化及粒度对其物性的影响研究[J]. 食品科学,2009,30(10):127−130. [Zhang Y R, Bu J Y, Yang X Y, et al. Extrusion functionalization of corn dietary fiber and effects of particle size on its physical properties[J]. Food Science,2009,30(10):127−130. doi: 10.3321/j.issn:1002-6630.2009.10.024
    [19]
    赵梅. 枣渣膳食纤维酶法改性工艺及相关性质研究[D]. 无锡: 江南大学, 2014.

    Zhao M. Study on enzymatic modification and related properties of dietary fiber of jujube residue[D]. Wuxi: Jiangnan University, 2014.
    [20]
    刘婷婷, 张传智, 浦静舒, 等. 双螺杆挤出工艺对米糠可溶性膳食纤维含量的影响[J]. 食品科学,2011,32(24):41−45. [Liu T T, Zhang C Z, Pu J S, et al. Effect of twin-screw extrusion conditions on soluble dietary fiber content of rice bran[J]. Food Science,2011,32(24):41−45.
    [21]
    Liu Y, Zhang H, Yi C, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021:342.
    [22]
    樊红秀. 高品质人参膳食纤维制取工艺优化及其功能特性的研究[D]. 长春: 吉林农业大学, 2013.

    Fan H X. Studies on the process optimiazion and funtional characteristics of high quality ginseng dietary fiber[D]. Changchun: Jilin Agricultural University, 2013.
    [23]
    Ma M, Mu T, Sun H, et al. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.)[J]. Food Chemistry,2015,179(15):270−277.
    [24]
    刘岩龙, 张彩丽, 黄萍萍, 等. 粒度对网纹瓜膳食纤维结构与性质的影响[J]. 食品研究与开发,2019,40(23):49−54. [Liu Y L, Zhang Y L, Huang P P, et al. Effect of grain size on structure and properties of dietary fiber from netted melon[J]. Food Research and Development,2019,40(23):49−54.
    [25]
    Zhu Y, He C, Fan H, et al. Modification of foxtail millet(Setaria italica)bran dietary fiber by xylanase-catalyzed hydrolysis improves its cholesterol-binding capacity[J]. Lebensmittel Wissenschaft Und Technologie,2019,101:463−468. doi: 10.1016/j.lwt.2018.11.052
    [26]
    陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学,2015,36(6):18−23. [Chen X J, Wu X F, Jiang S T, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science,2015,36(6):18−23. doi: 10.7506/spkx1002-6630-201506004
    [27]
    Liu Y, Zhang H, Yi C, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2020,342(1):128352.
    [28]
    Hu Y B, Wang Z, Xu S Y. Treatment of corn bran dietary fiber with xylanase increases its ability to bind bile salts, in vitro[J]. Food Chemistry,2008,106(1):113−121. doi: 10.1016/j.foodchem.2007.05.054
    [29]
    黄六容, 陈甜, 赵匀淑, 等. 超声波改善大蒜秸秆不溶性膳食纤维结构及吸附性[J]. 农业工程学报,2018,34(12):294−299. [Huang L R, Chen T, Zhao Y S, et al. Improvement on structure and adsorption of insoluble dietary fiber from garlic straw induced by ultrasound[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(12):294−299. doi: 10.11975/j.issn.1002-6819.2018.12.037
    [30]
    Bender A B B, Speroni C S, Moro K I B, et al. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate[J]. LWT,2020,117:108652. doi: 10.1016/j.lwt.2019.108652
    [31]
    Hua M, Lu J, Qu D, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient[J]. Food Chemistry,2019,286:522−529. doi: 10.1016/j.foodchem.2019.01.114
    [32]
    赵欣锐, 王秋阳, 杨晰茗, 等. 木聚糖酶改性红松松仁膜衣膳食纤维工艺优化及结构分析[J]. 东北农业科学,2019,44(5):111−115, 122. [Zhao X R, Wang Q Y, Yang X M, et al. Optimizing the preparation process of dietary fiber of pinus koraiensis nut coated-film modified by xylanase and analysis of its structure[J]. Journal of Northeast Agricultural Sciences,2019,44(5):111−115, 122.
    [33]
    Yan L, Li T, Liu C, et al. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre[J]. LWT,2019,107:171−177. doi: 10.1016/j.lwt.2019.03.019
    [34]
    Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties[J]. LWT-Food Science and Technology,2006,39(10):1087−1092. doi: 10.1016/j.lwt.2005.07.009
    [35]
    胡叶碧. 改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D]. 无锡: 江南大学, 2008.

    Hu Y B. Preparation of modified corn bran dietary fiber by enzyme hydrolysis and its hypolipidemic mechanisms[D]. Wuxi: Jiangnan University, 2008.
    [36]
    Benitez V, Rebollo-Hernanz M, Hernanz S, et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization[J]. Food Research International,2019,122:105−113. doi: 10.1016/j.foodres.2019.04.002
  • Cited by

    Periodical cited type(4)

    1. 宁豫昌,高俊杰,袁艺萌. 复合酶处理对刺梨、苹果混合发酵果汁的影响. 食品与生物技术学报. 2023(08): 87-94 .
    2. 袁先铃,刘梓建,张谱予,万晓玉. 洋葱汁的不同澄清工艺优化及其对品质影响的对比研究. 中国调味品. 2022(06): 55-60 .
    3. 杜慧慧,汪开拓,王富敏,邱铃岚,张娟娟,黎春红. 基于高通量测序分析不同品种柠檬NFC果汁的微生物多样性. 食品科技. 2021(03): 302-307 .
    4. 李毅. 果胶酶在食品产业领域的应用技术研究. 科技广场. 2020(03): 50-56 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (319) PDF downloads (31) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return