Citation: | XU Xinle, LIU Tingting, ZHANG Shanshan, et al. Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus[J]. Science and Technology of Food Industry, 2021, 42(18): 167−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120194. |
[1] |
Liu X, Ren Z, Yu R, et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J]. International Journal of Biological Macromolecules,2020:166.
|
[2] |
丁志超. 猴头菇活性多糖的制备、理化特性及其降血糖作用研究[D]. 镇江: 江苏大学, 2019.
Ding Z C. Preparation, physicochemical propreties and hypoglycemic activities of polysaccharides from Hericium erinaceus[D]. Zhenjiang: Jiangsu University, 2019.
|
[3] |
Wang X Y, Yin J Y, Nie S P, et al. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice[J]. International Journal of Biological Macromolecules,2018:S0141813017321463.
|
[4] |
郑超群. 基于肠道菌群靶点的猴头菌蛋白免疫活性研究[D]. 广州: 广州中医药大学, 2017.
Zheng C Q. Evaluate the Immunomodulatory activity of a fungal protein extracted from Hericium erinaceus based on gut microbiota[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2017.
|
[5] |
Liao J, Huang H. A fungal chitin derived from Hericium erinaceus residue: Dissolution, gelation and characterization[J]. International Journal of Biological Macromolecules,2020,152:456−464. doi: 10.1016/j.ijbiomac.2020.02.309
|
[6] |
Liao J, Huang H. Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures[J]. International Journal of Biological Macromolecules,2019.
|
[7] |
李聪, 王稳航. 食用菌膳食纤维研究的新进展[J]. 中国食品添加剂,2015(10):159−164. [Li C, Wang W H. New research advances in mushroom based dietary fiber[J]. China Food Additives,2015(10):159−164. doi: 10.3969/j.issn.1006-2513.2015.10.020
|
[8] |
陈龙, 郭晓晖, 李富华, 等. 食用菌膳食纤维功能特性及其应用研究进展[J]. 食品科学,2012,33(11):303−307. [Chen L, Guo X H, Li F H, et al. Research progress on the function and application of dietary fiber from edible fungi[J]. Food Science,2012,33(11):303−307.
|
[9] |
Cheung, Peter C K. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits[J]. Food Science & Human Wellness,2013,2(3-4):162−166.
|
[10] |
郑建仙. 功能性食品(第二卷)[M]. 北京: 中国轻工业出版社, 1999: 50-65.
Zheng J X. Functional food(volume 2)[M]. Beijing: China Light Industry Press, 1999: 50-65.
|
[11] |
Guerrero P, Beatty E, Kerry J P, et al. Extrusion of soy protein with gelatin and sugars at low moisture content[J]. Journal of Food Engineering,2012,110(1):53−59. doi: 10.1016/j.jfoodeng.2011.12.009
|
[12] |
李西腾. 响应面法优化鸡腿菇可溶性膳食纤维提取工艺[J]. 中国食品添加剂,2018(11):125−130. [Li X T. Optimization of extraction of soluble dietary fiber from Coprinus comatus by response surface methodology[J]. China Food Additives,2018(11):125−130. doi: 10.3969/j.issn.1006-2513.2018.11.015
|
[13] |
Xue Z, Ma Q, Guo Q, et al. Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues[J]. Food Bioence,2019,32:100452.
|
[14] |
刘学成. 金针菇膳食纤维提取、改性及应用研究[D]. 泰安: 山东农业大学, 2020.
Liu X C. Study on extraction, modification and application of dietary fiber from Flammulina velutipes[D]. Taian: Shandong Agricultural University, 2020.
|
[15] |
文攀, 裴志胜, 朱婷婷, 等. 黄皮果肉可溶性膳食纤维制备工艺优化及单糖组成和结构表征[J]. 食品工业科技,2020,41(21):29−36. [Wen P, Pei Z S, Zhu T T, et al. Preparation technology optimization of soluble dietary fiber and composition and structure characterization of monosaccharide from Clausena lansiu Sarcocarp[J]. Science and Technology of Food Industry,2020,41(21):29−36.
|
[16] |
Wu F, Zhou C, Zhou D, et al. Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity[J]. Journal of Functional Foods,2017,37:574−585. doi: 10.1016/j.jff.2017.08.030
|
[17] |
吾哈丽妮萨·麦麦提托合提, 帕尔哈提·柔孜, 杨晓君, 等. 响应面优化马骨髓蛋白的提取工艺及其抗氧化活性研究[J]. 食品工业科技,2020,2020, 42(12):151−159. [Wugulnisa Mamattohti, Parhat Rozi, Yang X J, et al. Extraction technology optimization of horse bone marrow protein by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry,2020,2020, 42(12):151−159.
|
[18] |
张艳荣, 卜佳莹, 杨小盈, 等. 玉米膳食纤维挤出功能化及粒度对其物性的影响研究[J]. 食品科学,2009,30(10):127−130. [Zhang Y R, Bu J Y, Yang X Y, et al. Extrusion functionalization of corn dietary fiber and effects of particle size on its physical properties[J]. Food Science,2009,30(10):127−130. doi: 10.3321/j.issn:1002-6630.2009.10.024
|
[19] |
赵梅. 枣渣膳食纤维酶法改性工艺及相关性质研究[D]. 无锡: 江南大学, 2014.
Zhao M. Study on enzymatic modification and related properties of dietary fiber of jujube residue[D]. Wuxi: Jiangnan University, 2014.
|
[20] |
刘婷婷, 张传智, 浦静舒, 等. 双螺杆挤出工艺对米糠可溶性膳食纤维含量的影响[J]. 食品科学,2011,32(24):41−45. [Liu T T, Zhang C Z, Pu J S, et al. Effect of twin-screw extrusion conditions on soluble dietary fiber content of rice bran[J]. Food Science,2011,32(24):41−45.
|
[21] |
Liu Y, Zhang H, Yi C, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021:342.
|
[22] |
樊红秀. 高品质人参膳食纤维制取工艺优化及其功能特性的研究[D]. 长春: 吉林农业大学, 2013.
Fan H X. Studies on the process optimiazion and funtional characteristics of high quality ginseng dietary fiber[D]. Changchun: Jilin Agricultural University, 2013.
|
[23] |
Ma M, Mu T, Sun H, et al. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.)[J]. Food Chemistry,2015,179(15):270−277.
|
[24] |
刘岩龙, 张彩丽, 黄萍萍, 等. 粒度对网纹瓜膳食纤维结构与性质的影响[J]. 食品研究与开发,2019,40(23):49−54. [Liu Y L, Zhang Y L, Huang P P, et al. Effect of grain size on structure and properties of dietary fiber from netted melon[J]. Food Research and Development,2019,40(23):49−54.
|
[25] |
Zhu Y, He C, Fan H, et al. Modification of foxtail millet(Setaria italica)bran dietary fiber by xylanase-catalyzed hydrolysis improves its cholesterol-binding capacity[J]. Lebensmittel Wissenschaft Und Technologie,2019,101:463−468. doi: 10.1016/j.lwt.2018.11.052
|
[26] |
陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学,2015,36(6):18−23. [Chen X J, Wu X F, Jiang S T, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science,2015,36(6):18−23. doi: 10.7506/spkx1002-6630-201506004
|
[27] |
Liu Y, Zhang H, Yi C, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2020,342(1):128352.
|
[28] |
Hu Y B, Wang Z, Xu S Y. Treatment of corn bran dietary fiber with xylanase increases its ability to bind bile salts, in vitro[J]. Food Chemistry,2008,106(1):113−121. doi: 10.1016/j.foodchem.2007.05.054
|
[29] |
黄六容, 陈甜, 赵匀淑, 等. 超声波改善大蒜秸秆不溶性膳食纤维结构及吸附性[J]. 农业工程学报,2018,34(12):294−299. [Huang L R, Chen T, Zhao Y S, et al. Improvement on structure and adsorption of insoluble dietary fiber from garlic straw induced by ultrasound[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(12):294−299. doi: 10.11975/j.issn.1002-6819.2018.12.037
|
[30] |
Bender A B B, Speroni C S, Moro K I B, et al. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate[J]. LWT,2020,117:108652. doi: 10.1016/j.lwt.2019.108652
|
[31] |
Hua M, Lu J, Qu D, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient[J]. Food Chemistry,2019,286:522−529. doi: 10.1016/j.foodchem.2019.01.114
|
[32] |
赵欣锐, 王秋阳, 杨晰茗, 等. 木聚糖酶改性红松松仁膜衣膳食纤维工艺优化及结构分析[J]. 东北农业科学,2019,44(5):111−115, 122. [Zhao X R, Wang Q Y, Yang X M, et al. Optimizing the preparation process of dietary fiber of pinus koraiensis nut coated-film modified by xylanase and analysis of its structure[J]. Journal of Northeast Agricultural Sciences,2019,44(5):111−115, 122.
|
[33] |
Yan L, Li T, Liu C, et al. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre[J]. LWT,2019,107:171−177. doi: 10.1016/j.lwt.2019.03.019
|
[34] |
Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties[J]. LWT-Food Science and Technology,2006,39(10):1087−1092. doi: 10.1016/j.lwt.2005.07.009
|
[35] |
胡叶碧. 改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D]. 无锡: 江南大学, 2008.
Hu Y B. Preparation of modified corn bran dietary fiber by enzyme hydrolysis and its hypolipidemic mechanisms[D]. Wuxi: Jiangnan University, 2008.
|
[36] |
Benitez V, Rebollo-Hernanz M, Hernanz S, et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization[J]. Food Research International,2019,122:105−113. doi: 10.1016/j.foodres.2019.04.002
|