Citation: | SHI Qiuyue, HOU Fujing, HAN Jiaojiao, et al. Research on the Alleviation of Osteoporosis by Oyster Shell Powder Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(18): 372−379. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120189. |
[1] |
Buckley L, Humphrey M B. Glucocorticoid-induced osteoporosis[J]. The New England Journal of Medicine,2018,379(26):2547−2556. doi: 10.1056/NEJMcp1800214
|
[2] |
Frenkel B, White W, Tuckermann J. Glucocorticoid-induced osteoporosis[J]. Adv Exp Med Biol,2015,872:179−215.
|
[3] |
耿彬, 夏亚一. 调控骨质疏松模型小鼠的ERK5蛋白信号通路[J]. 中国组织工程研究,2021,25(2):178−185. [Geng B, Xia Y Y. Involvement of ERK5 signaling pathway in osteoporosis development in mice[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2021,25(2):178−185. doi: 10.3969/j.issn.2095-4344.2955
|
[4] |
Yanbeiy Z A, Hansen K E. Denosumab in the treatment of glucocorticoid-induced osteoporosis: A systematic review and meta-analysis[J]. Drug Des Devel Ther,2019,13:2843−2852. doi: 10.2147/DDDT.S148654
|
[5] |
黄东. 糖皮质激素诱导骨质疏松症防治研究进展[J]. 临床合理用药杂志,2020,13(11):180−181. [Huang D. Research progress in prevention and treatment of glucocorticoid-induced osteoporosis[J]. Chinese Journal of Clinical Rational Drug Use,2020,13(11):180−181.
|
[6] |
张家国, 徐晓峰, 李明, 等. 银杏叶提取物对糖皮质激素诱导的骨质疏松症大鼠骨密度和骨生物力学的影响[J]. 中国骨质疏松杂志,2019,25(4):461−464, 471. [Zhang J G, Xu X F, Li M, et al. Effects of Ginkgo biloba extract on bone mineral density and bone biomechanics in rats with glucocorticoid-induced osteoporosis[J]. Chinese Journal of Osteoporosis,2019,25(4):461−464, 471. doi: 10.3969/j.issn.1006-7108.2019.04.007
|
[7] |
崔宗梅, 黄津伟, 王海艳, 等. 广东雷州半岛东部沿岸潮间带常见牡蛎的种类及其分布[J]. 海洋与湖沼,2018,49(6):1350−1357. [Cui Z M, Huang J W, Wang H Y, et al. Classification and distribution of oysters in eastern coast of Leizhou peninsula, China[J]. Oceanologia Et Limnologia Sinica,2018,49(6):1350−1357. doi: 10.11693/hyhz20180300054
|
[8] |
杨韵, 徐波. 牡蛎的化学成分及其生物活性研究进展[J]. 中国现代中药,2015,17(12):1345−1349. [Yang Y, Xu B. Research progress on chemical composition of oyster and its biological activity[J]. Modern Chinese Medicine,2015,17(12):1345−1349.
|
[9] |
蒋金来, 王令充, 吴皓, 等. 钙制剂研究进展[J]. 食品工业科技,2012,33(11):379−382, 387. [Jiang J L, Wang L C, Wu H, et al. Research progress in calcium preparation[J]. Science and Technology of Food Industry,2012,33(11):379−382, 387.
|
[10] |
李佳, 韩丽娜, 韦玮, 等. 牡蛎在补钙方面的研究进展[J]. 内蒙古中医药,2019,38(3):90−91. [Li J, Han L N, Wei W, et al. Research progress of oyster in calcium supplement[J]. Nei Mongol Journal of Traditional Chinese Medicine,2019,38(3):90−91.
|
[11] |
Chen Y, Jiang Y, Liao L, et al. Inhibition of 4NQO-Induced oral carcinogenesis by dietary oyster shell calcium[J]. Integrative Cancer Therapies,2016,15(1):96−101. doi: 10.1177/1534735415596572
|
[12] |
Wang Z, Wang K Y, Feng Y N, et al. Preparation, characterization of L-aspartic acid chelated calcium from oyster shell source and its calcium supplementation effect in rats[J]. Journal of Functional Foods,2020:75.
|
[13] |
Lerner A, Neidhöfer S, Matthias T. The gut microbiome feelings of the brain: A perspective for non-microbiologists[J]. Microorganisms,2017,5(4):66. doi: 10.3390/microorganisms5040066
|
[14] |
Li J, Yang M, Lu C, et al. Tuna bone powder alleviates glucocorticoid-induced osteoporosis via coregulation of the NF-κB and Wnt/β-catenin signaling pathways and modulation of gut microbiota composition and metabolism[J]. Molecular Nutrition & Food Research,2020,64(5):e1900861.
|
[15] |
Han J, Huang Z, Tang S, et al. The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation[J]. Food Chemistry,2020,327:127094. doi: 10.1016/j.foodchem.2020.127094
|
[16] |
Jiang Q, Lu C, Sun T, et al. Alterations of the brain proteome and gut microbiota in d-galactose-induced brain-aging mice with krill oil supplementation[J]. Journal of Agricultural and Food Chemistry,2019,67(35):9820−9830. doi: 10.1021/acs.jafc.9b03827
|
[17] |
Han J J, Wang X, Tang S, et al. Protective effects of tuna meat oligopeptides(TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota[J]. Faseb Journal,2020,34(4):5061−5076. doi: 10.1096/fj.201902597RR
|
[18] |
Jiang X T, Peng X, Deng G H, et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial Ecology,2013,66(1):96−104. doi: 10.1007/s00248-013-0238-8
|
[19] |
鲍伟, 韩姣姣, 张旨轩, 等. 基于高通量测序技术对浙江传统发酵蔬菜微生物多样性的解析[J]. 食品科学,2021,42(6):178−185. [Bao W, Han J J, Zhang Z X, et al. Analysis of microbial community diversity in Zhejiang traditional fermented vegetables using high-throughput sequencing[J]. Food Science,2021,42(6):178−185.
|
[20] |
Ibrahim N', Khamis M F, Mod Yunoh M F, et al. Targeted delivery of lovastatin and tocotrienol to fracture site promotes fracture healing in osteoporosis model: Micro-computed tomography and biomechanical evaluation[J]. PLoS One,2014,9(12):e115595. doi: 10.1371/journal.pone.0115595
|
[21] |
Chen C, Jin D, Liu Y, et al. Trabecular bone characterization on the continuum of plates and rods using in vivo MR imaging and volumetric topological analysis[J]. Physics in Medicine and Biology,2016,61(18):N478−N496. doi: 10.1088/0031-9155/61/18/N478
|
[22] |
尚芬兰, 徐晶晶, 赫荣波, 等. 骨转换标志物在糖尿病中的研究进展[J]. 中国骨质疏松杂志,2017,23(4):541−547. [Shang F L, Xu J J, He R B, et al. Research progress on the application of bone turnover markers in diabetes[J]. Chinese Journal of Osteoporosis,2017,23(4):541−547. doi: 10.3969/j.issn.1006-7108.2017.04.026
|
[23] |
耿娟娟, 秦福芳, 张文才. NTX与2型糖尿病性骨质疏松患者血清中骨转换标志物的相关性研究[J]. 中国合理用药探索,2020,17(6):56−60. [Geng J J, Qin F F, Zhang W C. Study on the correlation between NTX and serum bone turnover markers in patients with type 2 diabetic osteoporosis[J]. Chinese Journal of Rational Drug Use,2020,17(6):56−60.
|
[24] |
黄长安, 喻景弈. 血清癌胚抗原相关细胞黏附分子1、骨标志物硬化蛋白、Ⅰ型前胶原氨基端延长肽及护骨素变化与绝经后骨质疏松病人骨密度变化的相关性[J]. 安徽医药,2020,24(9):1828−1831. [Huang C A, Yu J Y. Correlation between changes of serum CEACAM1, SOST, P1NP and osteoprotegerin levels and changes of bone mineral density in PMOP patients with osteoporosis[J]. Anhui Medical and Pharmaceutical Journal,2020,24(9):1828−1831. doi: 10.3969/j.issn.1009-6469.2020.09.034
|
[25] |
Chung H, Pamp S J, Hill J A, et al. Gut immune maturation depends on colonization with a host-specific microbiota[J]. Cell,2012,149(7):1578−1593. doi: 10.1016/j.cell.2012.04.037
|
[26] |
Yan J, Charles J F. Gut microbiome and bone: To Build, destroy, or both?[J]. Current Atherosclerosis Reports,2017,15(4):376−384.
|
[27] |
Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass[J]. Trends in Endocrinology and Metabolism: TEM,2015,26(2):69−74. doi: 10.1016/j.tem.2014.11.004
|
[28] |
Yan J, Herzog J W, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci U S A,2016,113(47):E7554−E7563. doi: 10.1073/pnas.1607235113
|
[29] |
Ejtahed H S, Soroush A R, Angoorani P, et al. Gut microbiota as a target in the pathogenesis of metabolic disorders: A new approach to novel therapeutic agents[J]. Hormone and Metabolic Research,2016,48(6):349−358. doi: 10.1055/s-0042-107792
|
[30] |
Wu T, Yang L, Jiang J, et al. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats[J]. Life Sciences,2018,192:173−182. doi: 10.1016/j.lfs.2017.11.049
|
[31] |
孙梦晗, 邓敏, 白杨. 罗伊氏乳杆菌益生特性及治疗溃疡性结肠炎研究进展[J]. 现代消化及介入诊疗,2019,24(12):1493−1496. [Sun M H, Deng M, Bai Y. Research progress on the probiotic properties of Lactobacillus reuteri and the treatment of ulcerative colitis[J]. Modern Digestion & Intervention,2019,24(12):1493−1496. doi: 10.3969/j.issn.1672-2159.2019.12.035
|
[32] |
丁佳, 王慧艳, 何秋雯, 等. 益生菌对雌激素代谢及相关疾病的影响[J]. 食品科学,2016,37(11):248−254. [Ding J, Wang H Y, He Q W, et al. Effects of probiotics on estrogen metabolism and related disorders[J]. Food Science,2016,37(11):248−254. doi: 10.7506/spkx1002-6630-201611044
|
[33] |
Thaiss C A, Zmora N, Levy M, et al. The microbiome and innate immunity[J]. Nature,2016,535(7610):65−74. doi: 10.1038/nature18847
|
[34] |
Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nat Commun,2018,9(1):55. doi: 10.1038/s41467-017-02490-4
|