Citation: | ZHANG Ziying, DENG Lizhen, DAI Taotao, et al. Research Progress of Polysaccharide - Based Hydrogel Carriers and Their Drying Method[J]. Science and Technology of Food Industry, 2021, 42(23): 438−446. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120172. |
[1] |
HOARET R, KOHANE D S. Hydrogels in drug delivery: Progress and challenges[J]. Polymer,2008,49(8):1993−2007.
|
[2] |
AHMED, ENAS M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research,2015,6(2):105−121.
|
[3] |
RAAK N, ROHM H, JAROS D. Cross-linking with microbial transglutaminase: Isopeptide bonds and polymer size as drivers for acid casein gel stiffness[J]. International Dairy Journal,2016:49−55.
|
[4] |
SALARA A R, JAFARI S M, TONG Q, et al. Drug nanodelivery systems based on natural polysaccharides against different diseases[J]. Advances in Colloid and Interface Science,2020:102251.
|
[5] |
CAO Y, MEZZENGA R. Design principles of food gels[J]. Nature Food,2020,1(2):106−118.
|
[6] |
DHEER D, ARORA D, JAGLAN S, et al. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery[J]. Journal of Drug Targeting,2017,25(1):1−16.
|
[7] |
ZHANG L, PAN J, DONG S, et al. The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery[J]. Journal of Drug Targeting,2017,25(8):673−684.
|
[8] |
SZYMAŃSKA E, KATARZYNA W. Stability of Chitosan—A challenge for pharmaceutical and biomedical applications[J]. Marine Drugs,2015,13(4):1819−1846.
|
[9] |
HUANBUTTA K, CHEEWATANAKORNKOOL K, TERADAK, et al. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets[J]. Carbohydrate Polymers,2013,97(1):26−33.
|
[10] |
KIM I Y, SEO S J, MOON H S, et al. Chitosan and its derivatives for tissue engineering applications[J]. Biotechnology Advances,2008,26(1):1−21.
|
[11] |
LAYEK B, LIPP L, SINGH J. APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine[J]. Journal of Controlled Release,2015,207:143−153.
|
[12] |
FENG C, LI J, KONG M, et al. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery[J]. Colloids and Surfaces B-Biointerfaces,2015,128:439−447.
|
[13] |
OH N M, OH K T, BAIK H J, et al. A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation[J]. Colloids and Surfaces B-Biointerfaces,2010,78(1):120−126.
|
[14] |
ZHENG X F, LIAN Q, YANG H, et al. Surface molecularly imprinted polymer of chitosan grafted poly(methyl methacrylate) for 5-fluorouracil and controlled release[J]. Scientific Reports,2016,6:21409.
|
[15] |
D'AYALA G G, MALINCONICO M, LAURIENZO P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches[J]. Molecules,2008,13(9):2069−2106.
|
[16] |
LEONARD M, BOISSESON M R D, Hubert P, et al. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties[J]. Journal of Controlled Release,2004,98(3):395−405.
|
[17] |
FRÉDÉRIC V, CHRISTOPHE M, DURAND A, et al. Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives[J]. Carbohydrate Research,2009,344(2):223−228.
|
[18] |
YOON D Y, KIM J C. In vivo residence duration of human growth hormone loaded in nanogels comprising cinnamoyl alginate, cinnamoyl Pluronic F127 and cinnamoyl poly(ethylene glycol)[J]. International Journal of Pharmaceutics,2016,509(1−2):229−236.
|
[19] |
GAO X, GAO L, GROTH T, et al. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair[J]. Journal of Biomedical Materials Research Part A,2019(11):2076−2087.
|
[20] |
BANERJEE S, SIDDIQUI L, BHATTACHARYA S S, et al. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled releaseapplication[J]. International Journal of Biological Macromolecules,2012,50(1):198−206.
|
[21] |
SUN Y, MA Y, FANG G, et al. Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid[J]. BioResources,2016,11(1):2361−2371.
|
[22] |
GAWKOWSKA D, CYBULSKA J, ZDUNEK A. Structure-related gelling of pectins and linking with other natural compounds: A review[J]. Polymers,2018,10(7):762.
|
[23] |
BRACCINI I, PEREZ S. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited[J]. Biomacromolecules,2001,2(4):1089−1096.
|
[24] |
KUPCHIK L A, KARTEL' N T, BOGDANOV E S, et al. Chemical modification of pectin to improve its sorption properties[J]. Russian Journal of Applied Chemistry,2006,79(3):457−460.
|
[25] |
DAFE A, ETEMADI H, DILMAGHANI A, et al. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria[J]. International Journal of Biological Macromolecules,2017,97:536−543.
|
[26] |
BHATIA M S. Chemical modification of pectins, characterization and evaluation for drug delivery[J]. Scientia Pharmaceutica,2008,76(4):775−784.
|
[27] |
SOUZA J R R D, CARVALHO J I X D, TREVISAN M T S, et al. Chitosancoatedpectin beads: Characterization and in vitro release ofmangiferin[J]. Food Hydrocolloids,2009,23(8):2278−2286.
|
[28] |
MASINA N, CHOONARA Y E, KUMARP, et al. A review of the chemical modification techniques of starch[J]. Carbohydrate Polymers,2017,57(12):2691.
|
[29] |
HALAL S, COLUSSI R, PINTO V Z, et al. Structure, morphology and functionality of acetylated and oxidised barleystarches[J]. Food Chemistry,2015,168:247−256.
|
[30] |
MENG R, WU Z, XIE H, et al. Preparation, characterization, and encapsulation capability of the hydrogel cross-linked by esterified tapioca starch[J]. International Journal of Biological Macromolecules,2020,155:1−5.
|
[31] |
ZHAO L, CHEN Y, LI W, et al. Controlled uptake and releaseof lysozyme from glycerol diglycidyl ether cross-linked oxidizedstarch microgel[J]. Carbohydrate Polymers,2015,121:276−283.
|
[32] |
NAGAHAMA K, SANO Y, KUMANO T. Anticancer drug-based multifunctional nanogels through self-assembly of dextran-curcumin conjugates toward cancer theranostics[J]. Bioorganic & Medicinal Chemistry Letters,2015,25(12):2519−2522.
|
[33] |
ZHANG X, ZHANG R, HUANG J, et al. Albumin enhances PTX delivery ability of dextran NPs and therapeutic efficacy of PTX for colorectal cancer[J]. Journal of Materials Chemistry B,2019,7(22):3537−3545.
|
[34] |
张慧, 吴红, 范黎, 等. 酸敏性葡聚糖纳米凝胶的制备与释药性质考察[J]. 医药导报,2008,27(8):967−970. [ZHANG H, WU H, FAN L, et al. Preparation and drug release characteristics of the pH-sensitive dextran hydrogel nanoparticles[J]. Herald of Medicine,2008,27(8):967−970.
|
[35] |
CHEN F, MA Z, DONG G, et al. Composite glycidyl methacrylated dextran ( Dex-GMA) /gelatin nanoparticles for localized propein delivery[J]. Acta Pharmacologica Sinica,2009,30(4):485−493.
|
[36] |
PRESTWICH G D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine[J]. Journal of Controlled Release,2011,155(2):193−199.
|
[37] |
WANG S, ZHANG J, WANG Y, et al. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2016,12(2):411−420.
|
[38] |
LIANG K, NG S, LEE F, et al. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels[J]. Acta Biomaterialia,2016,33:142−152.
|
[39] |
WEI X, SENANAYAKE T H, WARREN G, et al. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors[J]. Bioconjugate Chemistry,2013,24(4):658−668.
|
[40] |
YAO H, ZHANG Y, SUN L, et al. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells[J]. Biomaterials,2014,35(33):9208−9223.
|
[41] |
BAINES D, SEAL R. Natural food additives, ingredients and flavourings[M]. Cambridge: Woodhead, 2012: 175−196.
|
[42] |
GEORGE A, SHAH P A, SHRIVASTAV P S. Guar gum: Versatile natural polymer for drug delivery applications[J]. European Polymer Journal,2019,112:722−735.
|
[43] |
GIRI A, BHOWMICK M, PAL S, et al. Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium[J]. International Journal of Biological Macromolecules,2011,49(5):885−893.
|
[44] |
GIRI A, BHUNIA T, MISHRA S R, et al. Acrylic acid grafted guargum-nanosilica membranes for transdermal diclofenac delivery[J]. Carbohydrate Polymers,2013,91(2):492−501.
|
[45] |
GIRI A, BHUNIA T, PAL A, et al. In-situ synthesis of polyacrylate grafted carboxymethyl guargum-carbon nanotube membranes for potential application in controlled drug delivery[J]. European Polymer Journal,2016,74:13−25.
|
[46] |
QI X, YUAN Y, ZHANG J, et al. Oral administration of Salecan-Based hydrogels for controlled insulin delivery[J]. Journal of Agricultural and Food Chemistry,2018,66(40):10479−10489.
|
[47] |
QI X, WEI W, LI J, et al. Salecan-based pH-sensitive hydrogels for insulin delivery[J]. Molecular Pharmaceutics,2017,14(2):431−440.
|
[48] |
QI X, WEI W, WEI D, et al. Salecan polysaccharide-based hydrogels and their applications: A review[J]. Journal of Materials Chemistry B,2019,7(16):2577−2587.
|
[49] |
KUMAR D R, KUMAR P S, GANDHI M R, et al. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes[J]. International Journal of Biological Macromolecules,2016,86:89−95.
|
[50] |
BLANDON L M, ISLAN G A, CASTRO G R, et al. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin[J]. Colloids Surfrace B:Biointerfaces,2016,145:706−715.
|
[51] |
LU D, XIAO C, XU S J. Starch-based completely biodegradable polymer materials[J]. Express Polymer Letters,2009,3(6):366−375.
|
[52] |
JIA X, HAN Y, PEI M, et al. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics[J]. Carbohydrate Polymers,2016,152:391−397.
|
[53] |
SAGAR V R, KUMAR S P. Recent advances in drying and dehydration of fruits and vegetables: A review[J]. Journal of Food Science and Technology-Mysore,2010,47(1):15−26.
|
[54] |
AKPINAR E K. Mathematical modelling of thin layer drying process under open sun of some aromatic plants[J]. Journal of Food Engineering,2006,77(4):864−870.
|
[55] |
HASHIM N, DANIELO, RAHAMAN E. A preliminary study: Kinetic model of drying process of pumpkins (Cucurbita moschata) in a convective hot air dryer[C]// Chin N L, Man H C, Talib R A, editor, 2nd International Conference on Agricultural and Food Engineering, Kuala Lumpur, Malaysia 2014: 345−352.
|
[56] |
HEGEDUS A, KLÁRAPH. Comparison of the effects of different drying techniques on properties of granules and tablets made on a production scale[J]. International Journal of Pharmaceutics,2007,330(1-2):99−104.
|
[57] |
TANGX, PIKAL M J. Design of freeze-drying processes for pharmaceuticals: Practical advice[J]. Pharmaceutical Research,2004,21(2):191−200.
|
[58] |
RISBUD M V, HARDIKAR A A, BHAT S V, et al. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery[J]. Journal of Controlled Release,2000,68(1):23−30.
|
[59] |
GAN K H, BRUTTINI R, CROSSER O K, et al. Freeze-drying of pharmaceuticals in vials on trays: Effects of drying chamber wall temperature and tray side on lyophilization performance[J]. International Journal of Heat and Mass Transfer,2005,48(9):1675−1687.
|
[60] |
RATTI C. Hot air and freeze-drying of high-value foods: A review[J]. Journal of Food Engineering,2001,49(4):311−319.
|
[61] |
WANG W. Lyophilization and development of solid protein pharmaceuticals[J]. International Journal of Pharmaceutics,2000,203(1):1−60.
|
[62] |
TABORSKY G. Protein alterations at low temperatures: An overview[M]. Proteins at Low Temperatures: American Chemical Society, 1979: 1−26.
|
[63] |
ESTELLA J, ECHEVERRIAJ C, LAGUNA M, et al. Effects of aging and drying conditions on the structural and textural properties of silica gels[J]. Microporous and Mesoporous Materials,2007,102(1-3):274−282.
|
[64] |
BROWN Z K, FRYER P J, NORTON I T, et al. Drying of agar gels using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2010,54(1):89−95.
|
[65] |
CASSANELLIM, PROSAPIO V, NORTON I, et al. Role of the drying technique on the low-Acyl gellan gum gel structure: Molecular and macroscopic investigations[J]. Springer Open Choice,2019,12(2):313−324.
|
[66] |
WANG Z, CHEN G. Heat and mass transfer in batch fluidized-bed drying of porous particles[J]. Chemical Engineering Science,2000,55(10):1857−1869.
|
[67] |
SRINIVASAKANNAN C, SHOAIBI A A, BALASUBRAMANIAN N. Continuous fluidized bed drying with and without internals: Kinetic model[J]. Chemical and Biochemical Engineering Quarterly,2012,26(2):97−104.
|
[68] |
COOK M T, TZORTZIS G, Charalampopoulos D, et al. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria[J]. Biomacromolecules,2011,12(7):2834−40.
|
[69] |
ALBADRAN H A, CHATZIFRAGKOU A, KHUTORYANSKIY V V, et al. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions[J]. Food Research International,2015,74(Aug.):208−216.
|
[70] |
BROECKX G, VANDENHEUVEL D, CLAES I J J, et al. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics[J]. International Journal of Pharmaceutics,2016,505(1-2):303−318.
|
[71] |
SAMPAIO G L A, PACHECO S, RIBEIRO A P O, et al. Encapsulation of a lycopene-rich watermelon concentrate in alginate and pectin beads: Characterization and stability[J]. Lwt-Food Science and Technology,2019:116.
|
[72] |
AN K, ZHAO D, WANG Z, et al. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure[J]. Food Chemistry,2016,197:1292−1300.
|
[73] |
LUIS P, KONG A, ANTONIO V, ANTONIO V, et al. Combined infrared-convective drying of murta (Ugni molinae Turcz) berries: Kinetic modeling and quality assessment[J]. Drying Technology,2013,31(3):329−338.
|
[74] |
SANTAGAPITA P R, MAZZOBRE M F, BUERA M P. Formulation and drying of alginate beads for controlled release and stabilization of invertase[J]. Biomacromolecules,2011,12(9):3147−55.
|
[75] |
STOJA M, IVONA J C, JASNA I, et al. Effect of starch xero- and aerogels preparation on the supercritical CO2 impregnation of thymol[J]. Starch - Stä rke,2015,67(1-2):174−182.
|
1. |
王甜甜,孙建明,潘笑. 壳聚糖在果蔬保鲜领域的应用机理研究. 轻工科技. 2025(02): 66-68+73 .
![]() | |
2. |
鲍佳欣,朱文卿,刘阳,李智博,张馨予,郑振佳. 低酯果胶-香菇多糖凝胶珠制备工艺优化与结构表征. 食品安全质量检测学报. 2025(06): 161-169 .
![]() | |
3. |
郑雅露,朱圣羽,熊晓辉,薛峰,李晨. 抗菌水凝胶在食品领域的研究进展. 食品工业科技. 2023(09): 446-454 .
![]() | |
4. |
胡亚云,张英萍,陈琳. 多酚交联的壳聚糖水凝胶的制备及其性质研究. 当代化工研究. 2022(18): 64-66 .
![]() |