Citation: | GAO Yaxin, ZHANG Mengran, HOU Lizhen, et al. Research Progress on the Undesirable Flavor in Natto[J]. Science and Technology of Food Industry, 2022, 43(1): 445−450. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120159. |
[1] |
AGUIAR L M, BICAS J L, FUENTES E, et al. Non-nutrients and nutrients from Latin American fruits for the prevention of cardiovascular diseases[J]. Food Research International,2021,139(4):109844.
|
[2] |
中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9): 833−854.
Report on cardiovascular health and diseases in China 2019: An updated summary[J]. Chinese Circulation Journal, 2020, 35(9): 833−854.
|
[3] |
DELLUC A, LACUT K, RODGER M A. Arterial and venous thrombosis: What's the link? A narrative review[J]. Thrombosis Research,2020,191:97−102. doi: 10.1016/j.thromres.2020.04.035
|
[4] |
AKHTAR T M, GOODCHILD C S, BOYLAN M K. Reversal of streptokinase-induced bleeding with aprotinin for emergency cardiac surgery[J]. Anaesthesia,2010,47(3):226−228.
|
[5] |
杨亚平. 纳豆成分的保健功效[J]. 大豆科技,2015(6):26−28. [YANG Y P. Health benefits of natto ingredients[J]. Soybean Science & Technology,2015(6):26−28.
|
[6] |
YUNQI W, JIAN Y, SAWYER S, et al. Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease[J]. International Journal of Molecular Sciences,2017,18(3):523. doi: 10.3390/ijms18030523
|
[7] |
刘玉猛, 刘英华. 纳豆激酶在血管性疾病防治中的研究进展[J]. 中国食物与营养,2020,26(12):41−44. [LIU Y M, LIU Y H. Research progress on prevention and treatment on vascular diseases of nattokinase[J]. Food and Nutrition in China,2020,26(12):41−44.
|
[8] |
赵福永, 严寒, 任广旭, 等. 重组纳豆激酶的研究进展[J]. 中国食物与营养,2019,25(7):41−45. [ZHAO F Y, YAN H, REN G X, et al. Research advancement on recombinant nattokinase[J]. Food and Nutrition in China,2019,25(7):41−45.
|
[9] |
李静, 宋艳志, 王梦静, 等. 纳豆激酶与尿激酶的对比性研究[J]. 中国药剂学杂志,2016,14(4):125−134. [LI J, SONG Y Z, WANG M J, et al. The comparative study of nattokinase and urokinase[J]. Chinese Journal of Pharmaceutics,2016,14(4):125−134.
|
[10] |
研究: 每天吃50克大豆发酵食品, 死亡率或降低[J]. 中国食品学报, 2020, 20(2): 102.
Study: Eating 50 grams of fermented soybeans a day may reduce the mortality rate[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(2): 102.
|
[11] |
刘彦敏, 沈璐, 王康, 等. 传统大豆发酵食品中纳豆芽孢杆菌的分离及纳豆发酵[J]. 食品科学,2020,41(2):208−214. [LIU Y M, SHEN L, WANG K, et al. Isolation of Bacillus subtilis natto from Chinese traditional fermented soybean foods and their use in fermentation of natto[J]. Food Science,2020,41(2):208−214.
|
[12] |
TAKEMURA H, ANDO N, TSUKAMOTO Y. Breeding of branched short-chain fatty acids non-producing natto bacteria and its application to production of natto with light smells[J]. Journal of Japanese Society for Food Science and Technology(Japan),2000,47:773−779. doi: 10.3136/nskkk.47.773
|
[13] |
杨野, 李佳莹, 张曼, 等. 混菌发酵纳豆的工艺研究[J]. 中国酿造,2019,38(6):49−53. [YANG Y, LI J Y, ZHANG M, et al. Fermentation process of natto with mixed starters[J]. China Brewing,2019,38(6):49−53.
|
[14] |
兰光群. 混菌发酵对纳豆感官特性的影响及功能性研究[D]. 贵阳: 贵州大学, 2020.
LAN G Q. Effects of mixed fermentation on sensory characteristics and functional properties of natto[D]. Guiyang: Guizhou University, 2020.
|
[15] |
高泽鑫, 王常苏, 黄勋, 等. 双菌混合发酵生产豆豉的条件优化[J]. 中国酿造,2014,33(9):49−52. [GAO Z X, WANG C S, HUANG X, et al. Optimization of Douchi processing by two strains fermentation[J]. China Brewing,2014,33(9):49−52.
|
[16] |
JHAN J K, CHANG W F, WANG P M, et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus[J]. LWT-Food Science & Technology,2015,63(2):1281−1287.
|
[17] |
何人可, 宋莲军, 黄现青, 等. 嗜热链球菌发酵改良纳豆工艺优化[J]. 食品工业科技,2020,41(6):161−166. [HE R K, SONG L J, HUANG X Q, et al. Optimization of fermentation process for Streptococcus thermophilus improved natto[J]. Science and Technology of Food Industry,2020,41(6):161−166.
|
[18] |
耿晓然, 徐慧, 卢鑫, 等. 响应面法优化纳豆混合发酵工艺的研究[J]. 河北农业大学学报,2020,43(1):96−103. [GENG X R, XU H, LU X, et al. Optimization of mixed fermentation of natto with response surface methodology[J]. Journal of Hebei Agricultural University,2020,43(1):96−103.
|
[19] |
张树明, 唐伟林. 降低纳豆氨味研究进展[J]. 黑龙江中国医药,2016,45(5):75−76. [ZHANG S M, TANG W L. Research progress on reducing the ammonia flavor of natto[J]. Heilongjiang Journal of Traditional Chinese Medicine,2016,45(5):75−76.
|
[20] |
张杰, 杨希娟, 党斌, 等. 蚕豆纳豆发酵工艺优化及其酶学性质[J]. 食品工业科技,2019,40(6):205−201. [ZHANG J, YANG X J, DANG B, et al. Optimization of fermentation process of natto by broad bean and its enzymatic properties[J]. Science and Technology of Food Industry,2019,40(6):205−201.
|
[21] |
LIN N N, LEE Y F, CHI Y J, et al. Bacillus subtilis-fermented red bean(red bean natto) reduces hyperlipidemia levels in hamsters fed an atherogenic diet[J]. Journal of Food Biochemistry,2017,47(1):1−11.
|
[22] |
张杰, 赵志峰, 靳岳, 等. 改善纳豆风味与营养特性工艺的对比研究[J]. 中国调味品,2019,44(4):11−15,22. [ZHANG J, ZHAO Z F, JIN Y, et al. Contrastive study on the technology of improving the flavor and nutrition characteristics of natto[J]. China Condiment,2019,44(4):11−15,22.
|
[23] |
董岳峰, 麻秀芳, 李晓艳, 等. 薏米纳豆发酵工艺及其营养成分分析[J]. 中国酿造,2014,33(12):142−145. [DONG Y F, MA X F, LI X Y, et al. Fermentation process and nutritional components of coixseed-natto[J]. China Brewing,2014,33(12):142−145.
|
[24] |
张捷, 牟建楼, 张伟, 等. 传统纳豆发酵条件的优化[J]. 食品工业,2019,40(6):118−122. [ZHANG J, MU J L, ZHANG W, et al. Optimization of traditional natto fermentation conditions[J]. The Food Industry,2019,40(6):118−122.
|
[25] |
关茵, 肖然, 李春. 从工艺角度改善纳豆风味的研究[J]. 中国酿造,2010(6):75−77. [GUAN Y, XIAO R, LI C, et al. Effect of processing on change of natto flavor[J]. China Brewing,2010(6):75−77.
|
[26] |
耿晓然. 纳豆菌种选育及新型风味纳豆食品的开发[D]. 保定: 河北农业大学, 2019.
GENG X R. Screening of natto strain and the developing of a new flavor natto food[D]. Baoding: Hebei Agricultural University, 2019.
|
[27] |
吴雪娇, 王旭旭, 张伟, 等. 纳豆风味改良技术的研究[J]. 中国调味品,2018,43(12):94−98. [WU X J, WANG X X, ZHANG W, et al. Research on the improvement technology of natto flavor[J]. China Condiment,2018,43(12):94−98.
|
[28] |
王丽娜, 付华峰. 风味纳豆的研制[J]. 中国调味品,2014,39(5):94−96. [WANG L N, FU H F. Preparation of flavor natto[J]. China Condiment,2014,39(5):94−96.
|
[29] |
牛红红, 苗欣宇, 郑丽, 等. 纳豆生产及冷藏过程中营养成分和生物活性物质变化[J]. 食品研究与开发,2021,42(4):48−54. [NIU H H, MIAO X Y, ZHENG L, et al. Changes in nutrient contents and active substances during natto production and cold storage[J]. Food Research and Development,2021,42(4):48−54.
|
[30] |
杜磊. 影响纳豆粉品质关键因素的研究[D]. 西安: 陕西科技大学, 2019.
DU L. Study on the key factors influencing the quality of natto powder[D]. Xi'an: Shaanxi University of Science and Technology, 2019.
|
[31] |
高霄. 不同冲调温度对纳豆粉感官及活菌数的影响[J]. 食品安全导刊,2020(21):113−115,117. [GAO X. Effect of different brewing temperature on sensory organs and viable bacteria count of natto powder[J]. China Food Safety Magazine,2020(21):113−115,117.
|
[32] |
田璐, 杨润强, 沈昌, 等. 富含GABA的纳豆咀嚼片生产技术研究[J]. 食品工业科技,2015,36(23):162−165,172. [TIAN L, YANG R Q, SHEN Q, et al. Research of production technology of GABA-riched natto chewable tablet[J]. Science and Technology of Food Industry,2015,36(23):162−165,172.
|
[33] |
慕琦, 向凌云, 赵艳岭, 等. 纳豆红曲胶囊活性成分及其保健功能研究进展[J]. 河南科学,2018,36(10):1562−1568. [MU Q, XIANG L Y, ZHAO Y L, et al. The active constituents and health function of natto monascus capsules[J]. Henan Science,2018,36(10):1562−1568.
|
[34] |
赵倩楠. 四种豆子纳豆发酵工艺条件的研究及产品开发[D]. 西安: 陕西科技大学, 2014.
ZHAO Q N. Fermentation conditions for four kinds of legumes natto and product development[D]. Xi’an: Shaanxi University of Science and Technology, 2014.
|
[35] |
WANG J, KUANG H, ZHANG Z, et al. Generation of seed lipoxygenase-free soybean using CRISPR-Cas9[J]. The Crop Journal,2020,8(3):432−439. doi: 10.1016/j.cj.2019.08.008
|
[36] |
XU M W, ZHAO J, GU Z X, et al. Changes in odor characteristics of pulse protein isolates from germinated chickpea, lentil, and yellow pea: Role of lipoxygenase and free radicals[J]. Food Chemistry,2020,314:126184. doi: 10.1016/j.foodchem.2020.126184
|
[37] |
PARK M K, KIM Y S. Comparative metabolic expressions of fermented soybeans according to different microbial starters[J]. Food Chemistry,2019,305:125461.
|
[38] |
ESTELLE F, RÉMY C, NATHALIE C. Pisum sativum vs glycine max, a comparative review of nutritional, physicochemical, and sensory properties for food uses[J]. Trends in Food Science & Technology,2020,95:196−204.
|
[39] |
TANAKA T, MURAMATSU K, KIM H R, et al. Comparison of volatile compounds from Chungkuk-jang and Itohiki-natto[J]. Bioscience Biotechnology and Biochemistry,1998,62(7):1440−1444. doi: 10.1271/bbb.62.1440
|
[40] |
LEEJEERAJUMNEAN A, DUCKHAM S C, OWENS J D, et al. Volatile compounds in bacillus-fermented soybean[J]. Journal of the Science of Food & Agriculture,2001,81(5):525−529.
|
[41] |
LIU Y, SONG H L, LUO H Z. Correlation between the key aroma compounds and gDNA copies of bacillus during fermentation and maturation of natto[J]. Food Research International,2018,112:175−183. doi: 10.1016/j.foodres.2018.06.033
|
[42] |
KEITAROU, KIMURA, SATOSHI YOKOYAMA. Trends in the application of bacillus in fermented foods[J]. Current Opinion in Biotechnology,2018,56:36−42.
|
[43] |
HONG C, CHEN Y, LI L, et al. Identification of a key gene involved in branched-chain short fatty acids formation in natto by transcriptional analysis and enzymatic characterization in Bacillus subtilis[J]. Journal of Agricultural and Food Chemistry,2017,65(8):1592−1597. doi: 10.1021/acs.jafc.6b05518
|
[44] |
KURGANOV B I. Analysis of negative cooperativity for glutamate dehydrogenase[J]. Biophysical Chemistry,2000,87(2-3):185−199. doi: 10.1016/S0301-4622(00)00193-9
|
[45] |
LARROCHE C, BESSON I, GROS J B. High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soybeans[J]. Process Biochemistry,1999,34(6−7):667−674. doi: 10.1016/S0032-9592(98)00141-1
|
[46] |
LEE K E, LEE S M, CHOI Y H, et al. Comparative volatile profiles in soy sauce according to inoculated microorganisms[J]. Bioscience Biotechnology and Biochemistry,2013,77(11):2192−2200. doi: 10.1271/bbb.130362
|
[47] |
张建华, 沈翔, 于湘莉. 纳豆发酵过程中的生物胺[J]. 上海交通大学学报(农业科学版),2007,25(1):1−6. [ZHANG J H, SHEN X, YU X L, et al. Biogenic amines during the fermentation in natto[J]. Journal of Shanghai Jiaotong University(Agricultural Science),2007,25(1):1−6.
|
[48] |
黄蓓. 纳豆芽孢杆菌rocG和ure基因分析及敲除载体的构建[D]. 上海: 上海交通大学, 2013.
HUANG B. Analysis and construction of knock-out vectors for rocG gene and ure gene in Bacillus subtilis natto[D]. Shanghai: Shanghai Jiao Tong University, 2013.
|
[49] |
KADA S, YABUSAKI M, KAGA T, et al. Identification of two major ammonia-releasing reactions involved in secondary natto fermentation[J]. Bioence Biotechnology and Biochemistry,2008,72(7):1869−1876. doi: 10.1271/bbb.80129
|
[50] |
TIAN G, WANG Q, WEI X, et al. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production[J]. Enzyme & Microbial Technology,2017,99:9−15.
|
[51] |
HASHIM P, SELAMAT J, ALI A, et al. Pyrazines formation in cocoa beans: Changes during fermentation[J]. Journal of Food Science and Technology,1997,34:483−487.
|
[52] |
SCALONE G L L, IOANNIDIS A G, LAMICHHANE P, et al. Impact of whey protein hydrolysates on the formation of 2, 5-dimethylpyrazine in baked food products[J]. Food Research International,2020,132:109089. doi: 10.1016/j.foodres.2020.109089
|
[53] |
CERNY C. The aroma side of the maillard reaction[J]. Annals of the New York Academy of Sciences,2008,1126(1):66−71. doi: 10.1196/annals.1433.011
|
[54] |
徐岩, 吴群, 范文来, 等. 中国白酒中四甲基吡嗪的微生物产生途径的发现与证实[J]. 酿酒科技,2011,7:37−40. [XU Y, WU Q, FAN W L, et al. The discovery & verification of the production pathway of Tetramethylpyrazine(TTMP) in Chiese liquor[J]. Liquor-Making Science & Technology,2011,7:37−40.
|
[55] |
ZHANG L, CAO Y, TONG J, et al. An alkylpyrazine synthesis mechanism involving l-threonine-3-dehydrogenase describes the production of 2, 5-dimethylpyrazine and 2, 3, 5-trimethylpyrazine by Bacillus subtilis[J]. Applied Environmental Microbiology,2019,85(24):e01807−19.
|
[56] |
张玉玉, 田红玉, 黄明泉, 等. 传统小麦酱挥发性香气成分的GC-MS与GC-O分析[J]. 食品科学,2012(18):138−142. [ZHANG Y Y, TIAN H Y, HUANG M Q, et al. GC-MS/GC-O analysis for aroma compounds in traditionally fermented wheat paste[J]. Food Science,2012(18):138−142.
|
[57] |
CHOI K H, HEATH R J, ROCK C O. β-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis[J]. Journal of Bacteriology,2000,182(2):365−370. doi: 10.1128/JB.182.2.365-370.2000
|
[58] |
MATSUMOTO H, AKITA K, SAKAI R, SHIMOMURA Y. Analysis of branched-chain α-keto acid dehydrogenase complex activity in rat tissues using α-keto[1-13C] isocaproate as substrate[J]. Analytical Biochemistry,2010,399(1):1−6. doi: 10.1016/j.ab.2009.12.017
|