SU Dan, SONG Ziyue, YANG Yang, et al. Research Progress of Soybean Protein Hydrogels[J]. Science and Technology of Food Industry, 2022, 43(3): 402−410. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120155.
Citation: SU Dan, SONG Ziyue, YANG Yang, et al. Research Progress of Soybean Protein Hydrogels[J]. Science and Technology of Food Industry, 2022, 43(3): 402−410. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120155.

Research Progress of Soybean Protein Hydrogels

More Information
  • Received Date: December 17, 2020
  • Available Online: December 06, 2021
  • Soybean protein is a kind of high quality plant protein resource which has great gelatability, biocompatibility and safety. It is also one of the main sources for preparing protein-based hydrogel materials. The latest research progress of hydrogels based on soybean protein is summarized in this paper. After a brief introduction of soybean protein and its structure, the main preparation methods and gel mechanism of soybean protein hydrogels are discussed. The application of soybean protein hydrogels in food industry is summarized, the existing problems and future research directions of soybean protein hydrogels are put forward to provide theoretical basis for preparing higher performance soybean protein hydrogels and promoting its wide application in the food field.
  • [1]
    TAN J, JOYNER H S. Characterizing wear behaviors of edible hydrogels by kernel-based statistical modeling[J]. Journal of Food Engineering,2020,275:109850. doi: 10.1016/j.jfoodeng.2019.109850
    [2]
    KOPEEK J, YANG J. Hydrogels as smart biomaterials[J]. Polymer International,2007,56(9):1078−1098. doi: 10.1002/pi.2253
    [3]
    KATYAL P, MAHMOUDINOBAR F, MONTCLARE J K. Recent trends in peptide and protein-based hydrogels[J]. Current Opinion in Structural Biology,2020,63:97−105. doi: 10.1016/j.sbi.2020.04.007
    [4]
    BAHRAM M, MOHSENI N, MOGHTADER M. An introduction to hydrogels and some recent applications[M]//Emerging concepts in analysis and applications of hydrogels. IntechOpen, 2016.
    [5]
    JONKER A M, LÖWIK D W P M, VAN HEST J C M. Peptide-and protein-based hydrogels[J]. Chemistry of Materials,2012,24(5):759−773. doi: 10.1021/cm202640w
    [6]
    BRINDHA J, CHANDA K, BALAMURALI M M. Revisiting the insights and applications of protein engineered hydrogels[J]. Materials Science and Engineering: C,2019,95:312−327. doi: 10.1016/j.msec.2018.11.002
    [7]
    CUADRI A A, BENGOECHEA C, ROMERO A, et al. A natural-based polymeric hydrogel based on functionalized soy protein[J]. European Polymer Journal,2016,85:164−174. doi: 10.1016/j.eurpolymj.2016.10.026
    [8]
    SNYDERS R, SHINGEL K I, ZABEIDA O, et al. Mechanical and microstructural properties of hybrid poly (ethylene glycol)–soy protein hydrogels for wound dressing applications[J]. Journal of Biomedical Materials Research Part A,2007,83(1):88−97.
    [9]
    PANAHI R, BAGHBAN-SALEHI M. Protein-based hydrogels[M]//Mondal M I H. Cellulose-based superabsorbent hydrogels. Cham: Springer International Publishing, 2018: 1−40.
    [10]
    XU H, SHEN L, XU L, et al. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study[J]. Biomedical Microdevices,2015,17(1):1−8. doi: 10.1007/s10544-014-9904-y
    [11]
    TIAN H, GUO G, FU X, et al. Fabrication, properties and applications of soy-protein-based materials: A review[J]. International Journal of Biological Macromolecules,2018,120:475−490. doi: 10.1016/j.ijbiomac.2018.08.110
    [12]
    NISHINARI K, FANG Y, GUO S, et al. Soy proteins: A review on composition, aggregation and emulsification[J]. Food Hydrocolloids,2014,39(2):301−318.
    [13]
    TANG C H. Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review)[J]. Food Hydrocolloids,2019,91:92−116. doi: 10.1016/j.foodhyd.2019.01.012
    [14]
    TANG C H. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility[J]. CRC Critical Reviews in Food Technology,2017,57(12):2636−2679. doi: 10.1080/10408398.2015.1067594
    [15]
    TANG C. Nanostructures of soy proteins for encapsulation of food bioactive ingredients[M]//Biopolymer nanostructures for food encapsulation purposes. Academic Press, 2019: 247−285.
    [16]
    MOURE A, SINEIRO J, DOMÍNGUEZ H, et al. Functionality of oilseed protein products: A review[J]. Food Research International,2006,39(9):945−963. doi: 10.1016/j.foodres.2006.07.002
    [17]
    LEE K H, RYU H S, RHEE K C. Protein solubility characteristics of commercial soy protein products[J]. Journal of the American Oil Chemists' Society,2003,80(1):85−90. doi: 10.1007/s11746-003-0656-6
    [18]
    赵群. 丝素蛋白水凝胶的研究进展[J]. 轻工科技,2016,32(8):29−32. [ZHAO Q. Research progress of silk fibroin hydrogel[J]. Light Industry Science and Technology,2016,32(8):29−32.
    [19]
    GUO Y, BAO Y, SUN K, et al. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions[J]. Food Hydrocolloids,2021,112:106293. doi: 10.1016/j.foodhyd.2020.106293
    [20]
    VILELA J A P, CAVALLIERI Â L F, DA CUNHA R L. The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum[J]. Food Hydrocolloids,2011,25(7):1710−1718. doi: 10.1016/j.foodhyd.2011.03.012
    [21]
    WU C, HUA Y, CHEN Y, et al. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size[J]. Food Hydrocolloids,2017,66:389−395. doi: 10.1016/j.foodhyd.2016.12.007
    [22]
    NICOLAI T, CHASSENIEUX C. Heat-induced gelation of plant globulins[J]. Current Opinion in Food Science,2019,27:18−22. doi: 10.1016/j.cofs.2019.04.005
    [23]
    JIAN H, XIONG Y L, GUO F, et al. Gelation enhancement of soy protein isolate by sequential low-and ultrahigh-temperature two-stage preheating treatments[J]. International Journal of Food Science & Technology,2014,49(12):2529−2537.
    [24]
    LU X, LU Z, YIN L, et al. Effect of preheating temperature and calcium ions on the properties of cold-set soybean protein gel[J]. Food Research International,2010,43(6):1673−1683. doi: 10.1016/j.foodres.2010.05.011
    [25]
    LAKEMOND C M M, DE JONGH H H J, PAQUES M, et al. Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation[J]. Food Hydrocolloids,2003,17(3):365−377. doi: 10.1016/S0268-005X(02)00100-5
    [26]
    WANG J, NA X, NAVICHA W B, et al. Concentration-dependent improvement of gelling ability of soy proteins by preheating or ultrasound treatment[J]. LWT,2020,134:110170. doi: 10.1016/j.lwt.2020.110170
    [27]
    CHIEN K B, CHUNG E J, SHAH R N. Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility[J]. Journal of Biomaterials Applications,2014,28(7):1085−1096. doi: 10.1177/0885328213497413
    [28]
    FLOROWSKA A, HILAL A, FLOROWSKI T, et al. Addition of selected plant-derived proteins as modifiers of inulin hydrogels properties[J]. Foods,2020,9(7):845. doi: 10.3390/foods9070845
    [29]
    KANGII J, MATSUMURA Y, MORI T. Characterization of texture and mechanical properties of heat-induced soy protein gels[J]. Journal of the American Oil Chemists' Society,1991,68(5):339−345. doi: 10.1007/BF02657690
    [30]
    CAMPBELL L J, GU X, DEWAR S J, et al. Effects of heat treatment and glucono-δ-lactone-induced acidification on characteristics of soy protein isolate[J]. Food Hydrocolloids,2009,23(2):344−351. doi: 10.1016/j.foodhyd.2008.03.004
    [31]
    BRYANT C M, MCCLEMENTS D J. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey[J]. Trends in Food Science & Technology,1998,9(4):143−151.
    [32]
    MARANGONI A G, BARBUT S, MCGAULEY S E, et al. On the structure of particulate gels—the case of salt-induced cold gelation of heat-denatured whey protein isolate[J]. Food Hydrocolloids,2000,14(1):61−74. doi: 10.1016/S0268-005X(99)00046-6
    [33]
    倪俊杰, 傅玉颖, 李可馨, 等. 不同凝固剂诱导大豆蛋白冷凝胶的流变特性及分形结构分析[J]. 中国食品学报,2018,18(7):295−305. [NI J J, FU Y Y, LI K X, et al. Fractal structure and rheological properties analysis of cold-set soy protein gel induced by different coagulants[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(7):295−305.
    [34]
    CHEN N, CHASSENIEUX C, NICOLAI T. Kinetics of NaCl induced gelation of soy protein aggregates: Effects of temperature, aggregate size, and protein concentration[J]. Food Hydrocolloids,2018,77:66−74. doi: 10.1016/j.foodhyd.2017.09.021
    [35]
    MOLINA E, DEFAYE A B, LEDWARD D A. Soy protein pressure-induced gels[J]. Food Hydrocolloids,2002,16(6):625−632. doi: 10.1016/S0268-005X(02)00028-0
    [36]
    张宏康, 李里特, 辰巳英三. 超高压对大豆分离蛋白凝胶的影响[J]. 中国农业大学学报,2001(2):87−91. [ZHANG H K, LI L T, TATSUMI E. Studies on high pressure induced gelation of isolated soybean protein[J]. Journal of China Agricultural University,2001(2):87−91. doi: 10.3321/j.issn:1007-4333.2001.02.019
    [37]
    HU H, WU J, LI-CHAN E C Y, et al. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions[J]. Food Hydrocolloids,2013,30(2):647−655. doi: 10.1016/j.foodhyd.2012.08.001
    [38]
    朱建华, 杨晓泉. 超声物理改性对SPI功能特性的影响[J]. 中国油脂,2006(1):42−44. [ZHU J H, YANG X Q. Effects of ultrasonic physical modification technology on the functional properties of soybean protein isolate[J]. China Oils and Fats,2006(1):42−44. doi: 10.3321/j.issn:1003-7969.2006.01.013
    [39]
    沈睦贤. 聚合物水凝胶的制备及粘接性能研究[D]. 上海: 华东理工大学, 2014

    SHEN M X. Synthesis and adhesion of polymeric hydrogels[D]. Shanghai: East China University of Science and Technology, 2014.
    [40]
    GERRARD J A, BROWN P K, FAYLE S E. Maillard crosslinking of food proteins I: The reaction of glutaraldehyde, formaldehyde and glyceraldehyde with ribonuclease[J]. Food Chemistry,2002,79(3):343−349. doi: 10.1016/S0308-8146(02)00174-7
    [41]
    GERRARD J A, MEADE S J, MILLER A G, et al. Protein cross-linking in food[J]. Annals of the New York Academy of Sciences,2010,1043:97−103.
    [42]
    CAILLARD R, REMONDETTO G E, SUBIRADE M. Physicochemical properties and microstructure of soy protein hydrogels co-induced by Maillard type cross-linking and salts[J]. Food Research International,2009,42(1):98−106. doi: 10.1016/j.foodres.2008.10.004
    [43]
    CAILLARD R, REMONDETTO G E, SUBIRADE M. Rheological investigation of soy protein hydrogels induced by Maillard-type reaction[J]. Food hydrocolloids,2010,24(1):81−87. doi: 10.1016/j.foodhyd.2009.08.009
    [44]
    GERRARD J A, BROWN P K, FAYLE S E. Maillard crosslinking of food proteins II: The reactions of glutaraldehyde, formaldehyde and glyceraldehyde with wheat proteins in vitro and in situ[J]. Food Chemistry,2003,80(1):35−43. doi: 10.1016/S0308-8146(02)00232-7
    [45]
    CAILLARD R, REMONDETTO G E, MATEESCU M A, et al. Characterization of amino cross-linked soy protein hydrogels[J]. Journal of Food Science,2008,73(5):C283−C291. doi: 10.1111/j.1750-3841.2008.00780.x
    [46]
    LIN J, GUO X, AI C, et al. Genipin crosslinked sugar beet pectin-whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties[J]. Food Hydrocolloids,2020,105:105802. doi: 10.1016/j.foodhyd.2020.105802
    [47]
    TEIMOURI S, DEKIWADIA C, KASAPIS S. Decoupling diffusion and macromolecular relaxation in the release of vitamin B6 from genipin-crosslinked whey protein networks[J]. Food Chemistry,2021,346:128886. doi: 10.1016/j.foodchem.2020.128886
    [48]
    SONG F, ZHANG L M. Gelation modification of soy protein isolate by a naturally occurring cross-linking agent and its potential biomedical application[J]. Industrial & Engineering Chemistry Research,2009,48(15):7077−7083.
    [49]
    金蓓, 冯宗财, 陈小娣, 等. 大豆蛋白基复合水凝胶的制备及其体外释放[J]. 食品工业科技,2012,33(13):84−87,91. [JIN B, FENG Z C, CHEN X D, et al. Study on preparation of soybean protein based composite hydrogel and itsin vitro releasel[J]. Science and Technology of Food Industry,2012,33(13):84−87,91.
    [50]
    HWANG D C, DAMODARAN S. Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel[J]. Journal of Applied Polymer Science,1996,62(8):1285−1293. doi: 10.1002/(SICI)1097-4628(19961121)62:8<1285::AID-APP19>3.0.CO;2-6
    [51]
    刘杰, 周浩, 黄郁芳, 等. 聚乙二醇化学改性的大豆分离蛋白凝胶[J]. 高等学校化学学报,2018,39(2):390−396. [LIU J, ZHOU H, HUANG Y F, et al. Polyethylene glycol chemically modified soy protein isolate hydrogel[J]. Chemical Journal of Chinese Universities,2018,39(2):390−396.
    [52]
    卢新生, 李榕, 李娜, 等. 甲基丙烯酸接枝改性大豆分离蛋白制备水凝胶及其性能研究[J]. 甘肃高师学报,2017,22(12):34−37. [LU X S, LI R, LI N, et al. Study on the preparation of hydrogel and its properties by the grafting of methacrylic acid graft modified soy protein isolate[J]. Journal of Gansu Normal Colleges,2017,22(12):34−37. doi: 10.3969/j.issn.1008-9020.2017.12.009
    [53]
    ZHANG M, YANG Y, ACEVEDO N C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels[J]. Food Chemistry,2020,318:126421. doi: 10.1016/j.foodchem.2020.126421
    [54]
    ZINK J, WYROBNIK T, PRINZ T, et al. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review[J]. International Journal of Molecular Sciences,2016,17(9):1376. doi: 10.3390/ijms17091376
    [55]
    HERNÀNDEZ-BALADA E, TAYLOR M M, PHILLIPS J G, et al. Properties of biopolymers produced by transglutaminase treatment of whey protein isolate and gelatin[J]. Bioresource Technology,2009,100(14):3638−3643. doi: 10.1016/j.biortech.2009.02.039
    [56]
    YOKOYAMA K, NIO N, KIKUCHI Y. Properties and applications of microbial transglutaminase[J]. Applied Microbiology and Biotechnology,2004,64(4):447−454. doi: 10.1007/s00253-003-1539-5
    [57]
    TANG C H, WU H, YU H P, et al. Coagulation and gelation of soy protein isolates induced by microbial transglutaminase[J]. Journal of Food Biochemistry,2006,30(1):35−55. doi: 10.1111/j.1745-4514.2005.00049.x
    [58]
    TANG C H, LI L, WANG J L, et al. Formation and rheological properties of ‘cold-set’ tofu induced by microbial transglutaminase[J]. LWT-Food Science and Technology,2007,40(4):579−586. doi: 10.1016/j.lwt.2006.03.001
    [59]
    SONG F, ZHANG L M. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel[J]. The Journal of Physical Chemistry B,2008,112(44):13749−13755. doi: 10.1021/jp8041389
    [60]
    GAN C Y, CHENG L H, EASA A M. Physicochemical properties and microstructures of soy protein isolate gels produced using combined cross-linking treatments of microbial transglutaminase and Maillard cross-linking[J]. Food Research International,2008,41(6):600−605. doi: 10.1016/j.foodres.2008.03.015
    [61]
    TANG S, YANG J, LIN L, et al. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal[J]. Chemical Engineering Journal,2020,393:124728. doi: 10.1016/j.cej.2020.124728
    [62]
    XU H, SHEN L, XU L, et al. Low-temperature crosslinking of proteins using non-toxic citric acid in neutral aqueous medium: Mechanism and kinetic study[J]. Industrial Crops and Products,2015,74:234−240. doi: 10.1016/j.indcrop.2015.05.010
    [63]
    WANG J, WEI J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J]. Materials Science and Engineering: C,2017,80:460−467. doi: 10.1016/j.msec.2017.06.018
    [64]
    ZHAO S P, MA D, ZHANG L M. New semi-interpenetrating network hydrogels: Synthesis, characterization and properties[J]. Macromolecular Bioscience,2006,6(6):445−451. doi: 10.1002/mabi.200600011
    [65]
    HOU J J, GUO J, WANG J M, et al. Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure[J]. Food Hydrocolloids,2015,50:94−101. doi: 10.1016/j.foodhyd.2015.04.012
    [66]
    HOU J J, YANG X Q, FU S R, et al. Preparation of double-network tofu with mechanical and sensory toughness[J]. International Journal of Food Science & Technology,2016,51(4):962−969.
    [67]
    CHEN H, GAN J, JI A, et al. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis[J]. Food Chemistry,2019,292:188−196. doi: 10.1016/j.foodchem.2019.04.059
    [68]
    DENG C, LIU Y, LI J, et al. Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment[J]. Food Hydrocolloids,2018,76:113−122. doi: 10.1016/j.foodhyd.2017.01.012
    [69]
    YAN W, ZHANG B, YADAV M P, et al. Corn fiber gum-soybean protein isolate double network hydrogel as oral delivery vehicles for thermosensitive bioactive compounds[J]. Food Hydrocolloids,2020,107:105865. doi: 10.1016/j.foodhyd.2020.105865
    [70]
    LIU Y, CUI Y. Thermosensitive soy protein/poly (n-isopropylacrylamide) interpenetrating polymer network hydrogels for drug controlled release[J]. Journal of Applied Polymer Science,2011,120(6):3613−3620. doi: 10.1002/app.33535
    [71]
    LIU Y, CUI Y. Preparation and properties of temperature-sensitive soy protein/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels[J]. Polymer International,2011,60(7):1117−1122. doi: 10.1002/pi.3050
    [72]
    李榕. 大豆分离蛋白基互穿网络水凝胶的制备及其性能[D]. 兰州: 西北师范大学, 2014

    LI R. Preparation and properties of soybean protein isolate based interpenetration network hydrogels [D]. Lanzhou: Northwest Normal University, 2014.
    [73]
    ABAEE A, MOHAMMADIAN M, JAFARI S M. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems[J]. Trends in Food Science & Technology,2017,70:69−81.
    [74]
    KHALESI H, LU W, NISHINARI K, et al. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies[J]. Advances in Colloid and Interface Science,2020:102278.
    [75]
    YOSHIMATSU H, YONEZAWA A, YAO Y, et al. Functional involvement of RFVT3/SLC52A3 in intestinal riboflavin absorption[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2014,306(2):G102−G110. doi: 10.1152/ajpgi.00349.2013
    [76]
    HU H, ZHU X, HU T, et al. Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods[J]. Journal of Functional Foods,2015,19:182−193. doi: 10.1016/j.jff.2015.09.023
    [77]
    MALTAIS A, REMONDETTO G E, SUBIRADE M. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds[J]. Food Hydrocolloids,2009,23(7):1647−1653. doi: 10.1016/j.foodhyd.2008.12.006
    [78]
    MALTAIS A, REMONDETTO G E, SUBIRADE M. Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances[J]. Food Hydrocolloids,2010,24(5):518−524. doi: 10.1016/j.foodhyd.2009.11.016
    [79]
    LEW L C, BHAT R, EASA A M, et al. Development of probiotic carriers using microbial transglutaminase-crosslinked soy protein isolate incorporated with agrowastes[J]. Journal of the Science of Food and Agriculture,2011,91(8):1406−1415. doi: 10.1002/jsfa.4325
    [80]
    YEW S E, LIM T J, LEW L C, et al. Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase[J]. Journal of Food Science,2011,76(3):H108−H115. doi: 10.1111/j.1750-3841.2011.02107.x
    [81]
    YAN W, JIA X, ZHANG Q, et al. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics[J]. Food Hydrocolloids,2020:106453.
    [82]
    DING X, YAO P. Soy protein/soy polysaccharide complex nanogels: Folic acid loading, protection, and controlled delivery[J]. Langmuir,2013,29(27):8636−8644. doi: 10.1021/la401664y

Catalog

    Article Metrics

    Article views (273) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return