Citation: | SU Dan, SONG Ziyue, YANG Yang, et al. Research Progress of Soybean Protein Hydrogels[J]. Science and Technology of Food Industry, 2022, 43(3): 402−410. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120155. |
[1] |
TAN J, JOYNER H S. Characterizing wear behaviors of edible hydrogels by kernel-based statistical modeling[J]. Journal of Food Engineering,2020,275:109850. doi: 10.1016/j.jfoodeng.2019.109850
|
[2] |
KOPEEK J, YANG J. Hydrogels as smart biomaterials[J]. Polymer International,2007,56(9):1078−1098. doi: 10.1002/pi.2253
|
[3] |
KATYAL P, MAHMOUDINOBAR F, MONTCLARE J K. Recent trends in peptide and protein-based hydrogels[J]. Current Opinion in Structural Biology,2020,63:97−105. doi: 10.1016/j.sbi.2020.04.007
|
[4] |
BAHRAM M, MOHSENI N, MOGHTADER M. An introduction to hydrogels and some recent applications[M]//Emerging concepts in analysis and applications of hydrogels. IntechOpen, 2016.
|
[5] |
JONKER A M, LÖWIK D W P M, VAN HEST J C M. Peptide-and protein-based hydrogels[J]. Chemistry of Materials,2012,24(5):759−773. doi: 10.1021/cm202640w
|
[6] |
BRINDHA J, CHANDA K, BALAMURALI M M. Revisiting the insights and applications of protein engineered hydrogels[J]. Materials Science and Engineering: C,2019,95:312−327. doi: 10.1016/j.msec.2018.11.002
|
[7] |
CUADRI A A, BENGOECHEA C, ROMERO A, et al. A natural-based polymeric hydrogel based on functionalized soy protein[J]. European Polymer Journal,2016,85:164−174. doi: 10.1016/j.eurpolymj.2016.10.026
|
[8] |
SNYDERS R, SHINGEL K I, ZABEIDA O, et al. Mechanical and microstructural properties of hybrid poly (ethylene glycol)–soy protein hydrogels for wound dressing applications[J]. Journal of Biomedical Materials Research Part A,2007,83(1):88−97.
|
[9] |
PANAHI R, BAGHBAN-SALEHI M. Protein-based hydrogels[M]//Mondal M I H. Cellulose-based superabsorbent hydrogels. Cham: Springer International Publishing, 2018: 1−40.
|
[10] |
XU H, SHEN L, XU L, et al. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study[J]. Biomedical Microdevices,2015,17(1):1−8. doi: 10.1007/s10544-014-9904-y
|
[11] |
TIAN H, GUO G, FU X, et al. Fabrication, properties and applications of soy-protein-based materials: A review[J]. International Journal of Biological Macromolecules,2018,120:475−490. doi: 10.1016/j.ijbiomac.2018.08.110
|
[12] |
NISHINARI K, FANG Y, GUO S, et al. Soy proteins: A review on composition, aggregation and emulsification[J]. Food Hydrocolloids,2014,39(2):301−318.
|
[13] |
TANG C H. Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review)[J]. Food Hydrocolloids,2019,91:92−116. doi: 10.1016/j.foodhyd.2019.01.012
|
[14] |
TANG C H. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility[J]. CRC Critical Reviews in Food Technology,2017,57(12):2636−2679. doi: 10.1080/10408398.2015.1067594
|
[15] |
TANG C. Nanostructures of soy proteins for encapsulation of food bioactive ingredients[M]//Biopolymer nanostructures for food encapsulation purposes. Academic Press, 2019: 247−285.
|
[16] |
MOURE A, SINEIRO J, DOMÍNGUEZ H, et al. Functionality of oilseed protein products: A review[J]. Food Research International,2006,39(9):945−963. doi: 10.1016/j.foodres.2006.07.002
|
[17] |
LEE K H, RYU H S, RHEE K C. Protein solubility characteristics of commercial soy protein products[J]. Journal of the American Oil Chemists' Society,2003,80(1):85−90. doi: 10.1007/s11746-003-0656-6
|
[18] |
赵群. 丝素蛋白水凝胶的研究进展[J]. 轻工科技,2016,32(8):29−32. [ZHAO Q. Research progress of silk fibroin hydrogel[J]. Light Industry Science and Technology,2016,32(8):29−32.
|
[19] |
GUO Y, BAO Y, SUN K, et al. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions[J]. Food Hydrocolloids,2021,112:106293. doi: 10.1016/j.foodhyd.2020.106293
|
[20] |
VILELA J A P, CAVALLIERI Â L F, DA CUNHA R L. The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum[J]. Food Hydrocolloids,2011,25(7):1710−1718. doi: 10.1016/j.foodhyd.2011.03.012
|
[21] |
WU C, HUA Y, CHEN Y, et al. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size[J]. Food Hydrocolloids,2017,66:389−395. doi: 10.1016/j.foodhyd.2016.12.007
|
[22] |
NICOLAI T, CHASSENIEUX C. Heat-induced gelation of plant globulins[J]. Current Opinion in Food Science,2019,27:18−22. doi: 10.1016/j.cofs.2019.04.005
|
[23] |
JIAN H, XIONG Y L, GUO F, et al. Gelation enhancement of soy protein isolate by sequential low-and ultrahigh-temperature two-stage preheating treatments[J]. International Journal of Food Science & Technology,2014,49(12):2529−2537.
|
[24] |
LU X, LU Z, YIN L, et al. Effect of preheating temperature and calcium ions on the properties of cold-set soybean protein gel[J]. Food Research International,2010,43(6):1673−1683. doi: 10.1016/j.foodres.2010.05.011
|
[25] |
LAKEMOND C M M, DE JONGH H H J, PAQUES M, et al. Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation[J]. Food Hydrocolloids,2003,17(3):365−377. doi: 10.1016/S0268-005X(02)00100-5
|
[26] |
WANG J, NA X, NAVICHA W B, et al. Concentration-dependent improvement of gelling ability of soy proteins by preheating or ultrasound treatment[J]. LWT,2020,134:110170. doi: 10.1016/j.lwt.2020.110170
|
[27] |
CHIEN K B, CHUNG E J, SHAH R N. Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility[J]. Journal of Biomaterials Applications,2014,28(7):1085−1096. doi: 10.1177/0885328213497413
|
[28] |
FLOROWSKA A, HILAL A, FLOROWSKI T, et al. Addition of selected plant-derived proteins as modifiers of inulin hydrogels properties[J]. Foods,2020,9(7):845. doi: 10.3390/foods9070845
|
[29] |
KANGII J, MATSUMURA Y, MORI T. Characterization of texture and mechanical properties of heat-induced soy protein gels[J]. Journal of the American Oil Chemists' Society,1991,68(5):339−345. doi: 10.1007/BF02657690
|
[30] |
CAMPBELL L J, GU X, DEWAR S J, et al. Effects of heat treatment and glucono-δ-lactone-induced acidification on characteristics of soy protein isolate[J]. Food Hydrocolloids,2009,23(2):344−351. doi: 10.1016/j.foodhyd.2008.03.004
|
[31] |
BRYANT C M, MCCLEMENTS D J. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey[J]. Trends in Food Science & Technology,1998,9(4):143−151.
|
[32] |
MARANGONI A G, BARBUT S, MCGAULEY S E, et al. On the structure of particulate gels—the case of salt-induced cold gelation of heat-denatured whey protein isolate[J]. Food Hydrocolloids,2000,14(1):61−74. doi: 10.1016/S0268-005X(99)00046-6
|
[33] |
倪俊杰, 傅玉颖, 李可馨, 等. 不同凝固剂诱导大豆蛋白冷凝胶的流变特性及分形结构分析[J]. 中国食品学报,2018,18(7):295−305. [NI J J, FU Y Y, LI K X, et al. Fractal structure and rheological properties analysis of cold-set soy protein gel induced by different coagulants[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(7):295−305.
|
[34] |
CHEN N, CHASSENIEUX C, NICOLAI T. Kinetics of NaCl induced gelation of soy protein aggregates: Effects of temperature, aggregate size, and protein concentration[J]. Food Hydrocolloids,2018,77:66−74. doi: 10.1016/j.foodhyd.2017.09.021
|
[35] |
MOLINA E, DEFAYE A B, LEDWARD D A. Soy protein pressure-induced gels[J]. Food Hydrocolloids,2002,16(6):625−632. doi: 10.1016/S0268-005X(02)00028-0
|
[36] |
张宏康, 李里特, 辰巳英三. 超高压对大豆分离蛋白凝胶的影响[J]. 中国农业大学学报,2001(2):87−91. [ZHANG H K, LI L T, TATSUMI E. Studies on high pressure induced gelation of isolated soybean protein[J]. Journal of China Agricultural University,2001(2):87−91. doi: 10.3321/j.issn:1007-4333.2001.02.019
|
[37] |
HU H, WU J, LI-CHAN E C Y, et al. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions[J]. Food Hydrocolloids,2013,30(2):647−655. doi: 10.1016/j.foodhyd.2012.08.001
|
[38] |
朱建华, 杨晓泉. 超声物理改性对SPI功能特性的影响[J]. 中国油脂,2006(1):42−44. [ZHU J H, YANG X Q. Effects of ultrasonic physical modification technology on the functional properties of soybean protein isolate[J]. China Oils and Fats,2006(1):42−44. doi: 10.3321/j.issn:1003-7969.2006.01.013
|
[39] |
沈睦贤. 聚合物水凝胶的制备及粘接性能研究[D]. 上海: 华东理工大学, 2014
SHEN M X. Synthesis and adhesion of polymeric hydrogels[D]. Shanghai: East China University of Science and Technology, 2014.
|
[40] |
GERRARD J A, BROWN P K, FAYLE S E. Maillard crosslinking of food proteins I: The reaction of glutaraldehyde, formaldehyde and glyceraldehyde with ribonuclease[J]. Food Chemistry,2002,79(3):343−349. doi: 10.1016/S0308-8146(02)00174-7
|
[41] |
GERRARD J A, MEADE S J, MILLER A G, et al. Protein cross-linking in food[J]. Annals of the New York Academy of Sciences,2010,1043:97−103.
|
[42] |
CAILLARD R, REMONDETTO G E, SUBIRADE M. Physicochemical properties and microstructure of soy protein hydrogels co-induced by Maillard type cross-linking and salts[J]. Food Research International,2009,42(1):98−106. doi: 10.1016/j.foodres.2008.10.004
|
[43] |
CAILLARD R, REMONDETTO G E, SUBIRADE M. Rheological investigation of soy protein hydrogels induced by Maillard-type reaction[J]. Food hydrocolloids,2010,24(1):81−87. doi: 10.1016/j.foodhyd.2009.08.009
|
[44] |
GERRARD J A, BROWN P K, FAYLE S E. Maillard crosslinking of food proteins II: The reactions of glutaraldehyde, formaldehyde and glyceraldehyde with wheat proteins in vitro and in situ[J]. Food Chemistry,2003,80(1):35−43. doi: 10.1016/S0308-8146(02)00232-7
|
[45] |
CAILLARD R, REMONDETTO G E, MATEESCU M A, et al. Characterization of amino cross-linked soy protein hydrogels[J]. Journal of Food Science,2008,73(5):C283−C291. doi: 10.1111/j.1750-3841.2008.00780.x
|
[46] |
LIN J, GUO X, AI C, et al. Genipin crosslinked sugar beet pectin-whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties[J]. Food Hydrocolloids,2020,105:105802. doi: 10.1016/j.foodhyd.2020.105802
|
[47] |
TEIMOURI S, DEKIWADIA C, KASAPIS S. Decoupling diffusion and macromolecular relaxation in the release of vitamin B6 from genipin-crosslinked whey protein networks[J]. Food Chemistry,2021,346:128886. doi: 10.1016/j.foodchem.2020.128886
|
[48] |
SONG F, ZHANG L M. Gelation modification of soy protein isolate by a naturally occurring cross-linking agent and its potential biomedical application[J]. Industrial & Engineering Chemistry Research,2009,48(15):7077−7083.
|
[49] |
金蓓, 冯宗财, 陈小娣, 等. 大豆蛋白基复合水凝胶的制备及其体外释放[J]. 食品工业科技,2012,33(13):84−87,91. [JIN B, FENG Z C, CHEN X D, et al. Study on preparation of soybean protein based composite hydrogel and itsin vitro releasel[J]. Science and Technology of Food Industry,2012,33(13):84−87,91.
|
[50] |
HWANG D C, DAMODARAN S. Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel[J]. Journal of Applied Polymer Science,1996,62(8):1285−1293. doi: 10.1002/(SICI)1097-4628(19961121)62:8<1285::AID-APP19>3.0.CO;2-6
|
[51] |
刘杰, 周浩, 黄郁芳, 等. 聚乙二醇化学改性的大豆分离蛋白凝胶[J]. 高等学校化学学报,2018,39(2):390−396. [LIU J, ZHOU H, HUANG Y F, et al. Polyethylene glycol chemically modified soy protein isolate hydrogel[J]. Chemical Journal of Chinese Universities,2018,39(2):390−396.
|
[52] |
卢新生, 李榕, 李娜, 等. 甲基丙烯酸接枝改性大豆分离蛋白制备水凝胶及其性能研究[J]. 甘肃高师学报,2017,22(12):34−37. [LU X S, LI R, LI N, et al. Study on the preparation of hydrogel and its properties by the grafting of methacrylic acid graft modified soy protein isolate[J]. Journal of Gansu Normal Colleges,2017,22(12):34−37. doi: 10.3969/j.issn.1008-9020.2017.12.009
|
[53] |
ZHANG M, YANG Y, ACEVEDO N C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels[J]. Food Chemistry,2020,318:126421. doi: 10.1016/j.foodchem.2020.126421
|
[54] |
ZINK J, WYROBNIK T, PRINZ T, et al. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review[J]. International Journal of Molecular Sciences,2016,17(9):1376. doi: 10.3390/ijms17091376
|
[55] |
HERNÀNDEZ-BALADA E, TAYLOR M M, PHILLIPS J G, et al. Properties of biopolymers produced by transglutaminase treatment of whey protein isolate and gelatin[J]. Bioresource Technology,2009,100(14):3638−3643. doi: 10.1016/j.biortech.2009.02.039
|
[56] |
YOKOYAMA K, NIO N, KIKUCHI Y. Properties and applications of microbial transglutaminase[J]. Applied Microbiology and Biotechnology,2004,64(4):447−454. doi: 10.1007/s00253-003-1539-5
|
[57] |
TANG C H, WU H, YU H P, et al. Coagulation and gelation of soy protein isolates induced by microbial transglutaminase[J]. Journal of Food Biochemistry,2006,30(1):35−55. doi: 10.1111/j.1745-4514.2005.00049.x
|
[58] |
TANG C H, LI L, WANG J L, et al. Formation and rheological properties of ‘cold-set’ tofu induced by microbial transglutaminase[J]. LWT-Food Science and Technology,2007,40(4):579−586. doi: 10.1016/j.lwt.2006.03.001
|
[59] |
SONG F, ZHANG L M. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel[J]. The Journal of Physical Chemistry B,2008,112(44):13749−13755. doi: 10.1021/jp8041389
|
[60] |
GAN C Y, CHENG L H, EASA A M. Physicochemical properties and microstructures of soy protein isolate gels produced using combined cross-linking treatments of microbial transglutaminase and Maillard cross-linking[J]. Food Research International,2008,41(6):600−605. doi: 10.1016/j.foodres.2008.03.015
|
[61] |
TANG S, YANG J, LIN L, et al. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal[J]. Chemical Engineering Journal,2020,393:124728. doi: 10.1016/j.cej.2020.124728
|
[62] |
XU H, SHEN L, XU L, et al. Low-temperature crosslinking of proteins using non-toxic citric acid in neutral aqueous medium: Mechanism and kinetic study[J]. Industrial Crops and Products,2015,74:234−240. doi: 10.1016/j.indcrop.2015.05.010
|
[63] |
WANG J, WEI J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J]. Materials Science and Engineering: C,2017,80:460−467. doi: 10.1016/j.msec.2017.06.018
|
[64] |
ZHAO S P, MA D, ZHANG L M. New semi-interpenetrating network hydrogels: Synthesis, characterization and properties[J]. Macromolecular Bioscience,2006,6(6):445−451. doi: 10.1002/mabi.200600011
|
[65] |
HOU J J, GUO J, WANG J M, et al. Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure[J]. Food Hydrocolloids,2015,50:94−101. doi: 10.1016/j.foodhyd.2015.04.012
|
[66] |
HOU J J, YANG X Q, FU S R, et al. Preparation of double-network tofu with mechanical and sensory toughness[J]. International Journal of Food Science & Technology,2016,51(4):962−969.
|
[67] |
CHEN H, GAN J, JI A, et al. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis[J]. Food Chemistry,2019,292:188−196. doi: 10.1016/j.foodchem.2019.04.059
|
[68] |
DENG C, LIU Y, LI J, et al. Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment[J]. Food Hydrocolloids,2018,76:113−122. doi: 10.1016/j.foodhyd.2017.01.012
|
[69] |
YAN W, ZHANG B, YADAV M P, et al. Corn fiber gum-soybean protein isolate double network hydrogel as oral delivery vehicles for thermosensitive bioactive compounds[J]. Food Hydrocolloids,2020,107:105865. doi: 10.1016/j.foodhyd.2020.105865
|
[70] |
LIU Y, CUI Y. Thermosensitive soy protein/poly (n-isopropylacrylamide) interpenetrating polymer network hydrogels for drug controlled release[J]. Journal of Applied Polymer Science,2011,120(6):3613−3620. doi: 10.1002/app.33535
|
[71] |
LIU Y, CUI Y. Preparation and properties of temperature-sensitive soy protein/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels[J]. Polymer International,2011,60(7):1117−1122. doi: 10.1002/pi.3050
|
[72] |
李榕. 大豆分离蛋白基互穿网络水凝胶的制备及其性能[D]. 兰州: 西北师范大学, 2014
LI R. Preparation and properties of soybean protein isolate based interpenetration network hydrogels [D]. Lanzhou: Northwest Normal University, 2014.
|
[73] |
ABAEE A, MOHAMMADIAN M, JAFARI S M. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems[J]. Trends in Food Science & Technology,2017,70:69−81.
|
[74] |
KHALESI H, LU W, NISHINARI K, et al. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies[J]. Advances in Colloid and Interface Science,2020:102278.
|
[75] |
YOSHIMATSU H, YONEZAWA A, YAO Y, et al. Functional involvement of RFVT3/SLC52A3 in intestinal riboflavin absorption[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2014,306(2):G102−G110. doi: 10.1152/ajpgi.00349.2013
|
[76] |
HU H, ZHU X, HU T, et al. Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods[J]. Journal of Functional Foods,2015,19:182−193. doi: 10.1016/j.jff.2015.09.023
|
[77] |
MALTAIS A, REMONDETTO G E, SUBIRADE M. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds[J]. Food Hydrocolloids,2009,23(7):1647−1653. doi: 10.1016/j.foodhyd.2008.12.006
|
[78] |
MALTAIS A, REMONDETTO G E, SUBIRADE M. Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances[J]. Food Hydrocolloids,2010,24(5):518−524. doi: 10.1016/j.foodhyd.2009.11.016
|
[79] |
LEW L C, BHAT R, EASA A M, et al. Development of probiotic carriers using microbial transglutaminase-crosslinked soy protein isolate incorporated with agrowastes[J]. Journal of the Science of Food and Agriculture,2011,91(8):1406−1415. doi: 10.1002/jsfa.4325
|
[80] |
YEW S E, LIM T J, LEW L C, et al. Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase[J]. Journal of Food Science,2011,76(3):H108−H115. doi: 10.1111/j.1750-3841.2011.02107.x
|
[81] |
YAN W, JIA X, ZHANG Q, et al. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics[J]. Food Hydrocolloids,2020:106453.
|
[82] |
DING X, YAO P. Soy protein/soy polysaccharide complex nanogels: Folic acid loading, protection, and controlled delivery[J]. Langmuir,2013,29(27):8636−8644. doi: 10.1021/la401664y
|