ZHOU Chengmin, YANG Ji, ZHOU Ziqiu, et al. Effects of High-Voltage Electrostatic Field(HVEF)Treatment on the Quality of Fresh-Cut Bamboo Shoots (Acidosasa edulis) During Cold Storage[J]. Science and Technology of Food Industry, 2021, 42(23): 319−325. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120141.
Citation: ZHOU Chengmin, YANG Ji, ZHOU Ziqiu, et al. Effects of High-Voltage Electrostatic Field(HVEF)Treatment on the Quality of Fresh-Cut Bamboo Shoots (Acidosasa edulis) During Cold Storage[J]. Science and Technology of Food Industry, 2021, 42(23): 319−325. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120141.

Effects of High-Voltage Electrostatic Field(HVEF)Treatment on the Quality of Fresh-Cut Bamboo Shoots (Acidosasa edulis) During Cold Storage

More Information
  • Received Date: December 15, 2020
  • Available Online: September 21, 2021
  • Fresh-cut bamboo shoots (Acidosasa edulis) were subjected to high-voltage electrostatic field (HVEF) treatment at 600 kV/m for 120 mins and then stored at (6±1) ℃ along with 80%~85 % RH for 10 days to investigate the effects of HVEF treatment on the edible quality, lignification and enzymatic browning. The results indicated that HVEF treatment significantly (P<0.05) inhibited wound browning, slowed down the increase of respiratory rate, flesh firmness and accumulation of cellulose and lignin and hydrogen peroxide (H2O2) content, significantly (P<0.05) decreased the activities of phenylalanine ammonia lyase (PAL), peroxidase (POD), cinnamyl alcohol dehydrogenase (CAD) and polyphenol oxidase (PPO), and also significantly (P<0.05) increased the activities of superoxide dismutase (SOD) and catalase (CAT) during cold storage. It was suggested that HVEF treatment delayed wound browning and lignification in bamboo shoots compared with the control.
  • [1]
    LIU C E, CHEN W J, CHANG C K, et al. Effect of a high voltage electrostatic field (HVEF) on the shelf life of persimmons (Diospyros kaki)[J]. LWT-Food Science and Technology,2017,75:236−242. doi: 10.1016/j.lwt.2016.08.060
    [2]
    HUANG Y C, YANG Y H, SRIDHAR K, et al. Synergies of modified atmosphere packaging and high-voltage electrostatic field to extend the shelf-life of fresh-cut cabbage and baby corn[J]. LWT-Food Science and Technology,2021,138:110559. doi: 10.1016/j.lwt.2020.110559
    [3]
    KAO N Y, TU Y F, SRIDHAR K, et al. Effect of a high voltage electrostatic field (HVEF) on the shelf-life of fresh-cut broccoli (Brassica oleracea var. italica)[J]. LWT-Food Science and Technology,2019,116:108532. doi: 10.1016/j.lwt.2019.108532
    [4]
    SAMARANAYAKE C P, SASTRY S K. Effects of controlled-frequency moderate electric fields on pectin methylesterase and polygalacturonase activities in tomato homogenate[J]. Food Chemistry,2016,199:265−272. doi: 10.1016/j.foodchem.2015.12.010
    [5]
    QI M Y, ZHAO R Q, LIU Q Y, et al. Antibacterial activity and mechanism of high voltage electrostatic field (HVEF) against Staphylococcus aureus in medium plates and food systems[J]. Food Control,2021,120:107566. doi: 10.1016/j.foodcont.2020.107566
    [6]
    LI D P, JIA S L, ZHANG L T, et al. Effect of using a high voltage electrostatic field on microbial communities, degradation of adenosine triphosphate, and water loss when thawing lightly-salted, frozen common carp (Cyprinus carpio)[J]. Journal of Food Engineering,2017,212:226−233. doi: 10.1016/j.jfoodeng.2017.06.003
    [7]
    HUANG H, SUN W, XIONG G, et al. Effects of HVEF treatment on microbial communities and physicochemical properties of catfish fillets during chilled storage[J]. LWT-Food Science and Technology,2020:109667.
    [8]
    KO W C, YANG S Y, CHANG C K, et al. Effects of adjustable parallel high voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration[J]. LWT-Food Science and Technology,2016,66:151−157. doi: 10.1016/j.lwt.2015.10.019
    [9]
    FALLAH-JOSHAQANI S, HAMDAMI N, KERAMAT J. Qualitative attributes of button mushroom (Agaricus bisporus) frozen under high voltage electrostatic field[J]. Journal of Food Engineering,2021,293:110384. doi: 10.1016/j.jfoodeng.2020.110384
    [10]
    JIA G L, HE X L, NIRASAWA S, et al. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin[J]. Journal of Food Engineering,2017,204:18−26. doi: 10.1016/j.jfoodeng.2017.01.020
    [11]
    AMIRI A, MOUSAKHANI-GANJEH A, SHAFIEKHANI S, et al. Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins[J]. Innovative Food Science & Emerging Technologies,2019,56:102191.
    [12]
    JIA G L, BERG F V D, HAO H, et al. Estimating the structure of sarcoplasmic proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field[J]. Journal of Food Science and Technology,2020,57(4):1574−1578. doi: 10.1007/s13197-020-04253-4
    [13]
    JIA G L, NIRASAWA S, JI X H, et al. Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field[J]. Food Chemistry,2018,240:910−916. doi: 10.1016/j.foodchem.2017.07.138
    [14]
    JIA G L, LIU H J, NIRASAWA S, et al. Effects of high-voltage electrostatic field treatment on the thawing rate and post-thawing quality of frozen rabbit meat[J]. Innovative Food Science & Emerging Technologies,2017,41:348−356.
    [15]
    LUO Z S, FENG S M, PANG J, et al. Effect of heat treatment on lignification of postharvest bamboo shoots (Phyllostachys praecox f. prevernalis.)[J]. Food Chemistry,2012,135(4):2182−2187. doi: 10.1016/j.foodchem.2012.07.087
    [16]
    曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007: 101−105, 142−144.

    CAO J K, JIANG W B, ZHAO Y M. Guidance on postharvest physiological and biochemical experiments of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007: 101−105, 142−144.
    [17]
    MUKHERJEC S P, CHOUDHURI M A. Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings[J]. Physiol Plantarum,2010,58(2):166−170.
    [18]
    YANG H Q, ZHENG J Y, HUANG C Q, et al. Effects of combined aqueous chlorine dioxide and chitosan coatings on microbial growth and quality maintenance of fresh-cut bamboo shoots (Phyllostachys praecox f. prevernalis.) during storage[J]. Food and Bioprocess Technology,2015,8(5):1011−1019. doi: 10.1007/s11947-014-1463-y
    [19]
    ZHENG J, LI S E, XU Y H, et al. Effect of oxalic acid on edible quality of bamboo shoots (Phyllostachys prominens) without sheaths during cold storage[J]. LWT-Food Science and Technology,2019,109:194−200. doi: 10.1016/j.lwt.2019.04.014
    [20]
    ATUNGULU G, NISHIYAMA Y, KOIDE S. Use of an electric field to extend the shelf life of apples[J]. Biosystems Engineering,2003,85(1):41−49. doi: 10.1016/S1537-5110(03)00032-1
    [21]
    王敬文. 采后竹笋老化生理研究[J]. 林业科学研究,2002,15(6):687−692. [WANG J W. Study on ageing physiology of postharvest bamboo shoots[J]. Forest Research,2002,15(6):687−692. doi: 10.3321/j.issn:1001-1498.2002.06.009
    [22]
    罗自生. GA3处理对采后竹笋木质化及内源激素水平的影响[J]. 园艺学报,2005,32(3):454−457. [LUO Z S. Effects of GA3 treatment on lignification and endogenous hormone levels of postharvest bamboo shoots[J]. Acta Horticulturae Sinica,2005,32(3):454−457. doi: 10.3321/j.issn:0513-353X.2005.03.014
    [23]
    陆胜民, 孔凡春. 低氧气调包装对去壳雷笋褐变和木质化的影响[J]. 植物生理与分子生物学学报,2004,30(4):387−392. [LU S M, KONG F C. Effects of low oxygen-modified atmosphere packaging on browning and lignification of peeled bamboo shoots[J]. Journal of Plant Physiology and Molecular Biology,2004,30(4):387−392.
    [24]
    DEGL'INNOCENTI E, GUIDI L, PARDOSSI A, et al. Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. acephala)[J]. Journal of Agricultural and Food Chemistry,2005,53(26):9980−9984. doi: 10.1021/jf050927o
    [25]
    PEISER G, LO’PEZ-GA'LVEZ G, CANTWELL M, et al. Phenylalanine ammonia lyase inhibitors control browning of cut lettuce[J]. Postharvest Biology and Technology,1998,14(2):171−177. doi: 10.1016/S0925-5214(98)00048-9
    [26]
    LUO Z S, WU X, XIE Y, et al. Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment[J]. Food Chemistry,2012,131(2):456−461. doi: 10.1016/j.foodchem.2011.09.007
    [27]
    顾 青, 朱睦元, 王向阳, 等. 雷竹笋采后生理及其贮藏技术研究[J]. 浙江大学学报(农业与生命科学版),2002,28(2):169−174. [GU Q, ZHU M Y, WANG X Y, et al. Studies on postharvest physiology and storage of bamboo shoots in Phyllostachys praecox f. preveynalis[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2002,28(2):169−174.
    [28]
    LACAN D, BACCOU J C. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted fruits[J]. Planta,1998,204(3):377−382. doi: 10.1007/s004250050269
    [29]
    ZHAO R, HAO J, XUE J, et al. Effect of high-voltage electrostatic field pretreatment on the antioxidant system in stored green mature tomatoes[J]. Journal of the Science of Food and Agriculture,2011,91(9):1680−1686. doi: 10.1002/jsfa.4369
    [30]
    LEE J Y, PARK H J, LEE C Y, et al. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents[J]. LWT-Food Science and Technology,2003,36(3):323−329. doi: 10.1016/S0023-6438(03)00014-8
  • Cited by

    Periodical cited type(7)

    1. 刘亚兵,罗学尹,戴宇樵,王敏,蒲璐璐,潘科,刘忠英,李琴. 灵芝菌处理对夏秋黑茶梗品质的影响. 沈阳农业大学学报. 2023(03): 289-295 .
    2. 孟圆,夏婷,程艳,耿贝贝,权冰艳,宋睿喆,于金浩,王敏,白晓丽. 碱法提取普洱茶渣膳食纤维的工艺优化. 食品研究与开发. 2023(18): 158-164 .
    3. 高丽娟,郜春霞,吴佳琪,吴修祯,李凯. 响应面法优化爬山虎不溶性膳食纤维反提取工艺. 河南农业. 2023(36): 56-59 .
    4. 许婧. 茶叶保健食品加工技术及发展趋势分析. 现代食品. 2022(04): 70-73 .
    5. 王彤辉,相堂永,徐姗,顾依,任舒静,江勇,杨帆,陈志鹏. 萌芽黑青稞喷干粉的制备工艺优化. 食品研究与开发. 2022(10): 156-165 .
    6. 皮小弟,罗瑞婷,李叶青,邹志群,吴思毅,黄志远. 豆渣水溶性膳食纤维的复合酶法提取及其应用于可食性膜研究. 保鲜与加工. 2022(10): 56-62 .
    7. 牛潇潇,王杰,王宁,梁亮,韩育梅,杨杨. 超微粉碎对马铃薯渣理化性质和微观结构的影响. 中国粮油学报. 2022(12): 84-91 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (198) PDF downloads (31) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return