LIU Xiaozhu, ZHANG Yuanlin, LI Yinfeng, et al. Breeding of High Yield β-glucosidase Yeast by Mutagenesis and Its Effect on the Aroma Characteristics of Rosa roxburghii Tratt Wine[J]. Science and Technology of Food Industry, 2021, 42(19): 118−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120115.
Citation: LIU Xiaozhu, ZHANG Yuanlin, LI Yinfeng, et al. Breeding of High Yield β-glucosidase Yeast by Mutagenesis and Its Effect on the Aroma Characteristics of Rosa roxburghii Tratt Wine[J]. Science and Technology of Food Industry, 2021, 42(19): 118−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120115.

Breeding of High Yield β-glucosidase Yeast by Mutagenesis and Its Effect on the Aroma Characteristics of Rosa roxburghii Tratt Wine

More Information
  • Received Date: December 13, 2020
  • Available Online: August 11, 2021
  • To analyze the effects of β-glucosidase on the aroma characteristics of Rosa roxburghii Tratt (Rosa roxburghii) wine, a strain of Wickerhamomyces anomalus (W. anomalus) C4 producing β-glucosidase was used as the starting strain, and its β-glucosidase activity was further improved by mutagenesis using ethylmethanesulfonate (EMS). R. roxburghii wine was produced via pure or mixed inoculatation of W. anomalus or together with Saccharomyces cerevisiae. The β-glycosidase producing ability was examined using p-nitrophenyl-β-D-glucopyranoside colorimetry. Headspace solid phase microextraction (HS-SPME) and gas phase mass spectrometry (GC-MS) were performed to determine the volatile aroma substances of each group of R. roxburghii wine. A mutant strain W.anomalus E3 with stable β-glucosidase produced activity was obtained using the mutagenic agent EMS, and the enzyme activity of W.anomalus E3 was (55.05±1.74) U/L, which increased 31.70% compared with the starting strain W.anomalus C4. β-glucosidase activity increased gradually, reached its maximum at the 10th day, and then decreased rapidly during the fermentation process of R. roxburghii wine. Inoculation with W.anomalus C4 and E3 could reduce theacidity value including total acid, volatile acid and pH of the R. roxburghii wine, and the total sugar content was also decreased. Moreover, inoculation with W.anomalus C4 and E3 also regulate the aroma characteristics, such as increasing the volatile ester and alcohol content and the OAVs of the main aroma components. Therefore, it was helpful to regulate the aroma characteristics and increase the complexity and richness of the R. roxburghii wine when inoculation with W.anomalus strain producing β-glucosidase.
  • [1]
    Wang L, Li C, Huang Q, et al. Polysaccharide from Rosa roxburghii Tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice[J]. Journal of Agricultural and Food Chemistry,2020,68(1):147−159. doi: 10.1021/acs.jafc.9b06247
    [2]
    Liu M H, Zhang Q, Zhang Y H, et al. Chemical analysis of dietary constituents in Rosa roxburghii and Rosa sterilis fruits[J]. Molecules,2016,21(9):1204. doi: 10.3390/molecules21091204
    [3]
    彭邦远, 张洪礼, 孙小静, 等. 热处理刺梨汁香气物质的SPME-GC-MS检测与主成分分析[J]. 食品科学,2018,39(6):230−236. [Peng Bangyuan, Zhang Hongli, Sun Xiaojing, et al. Analysis of volatile aroma compounds of heated Rosa roxbuighii Tratt juice by solid-phase microextraction combined with gas chromatography-mass spectrometry and principal component analysis[J]. Food Science,2018,39(6):230−236. doi: 10.7506/spkx1002-6630-201806036
    [4]
    Huang X, Yan H, Zhai L, et al. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes[J]. PLoS One, 2019, 14(3): e0203014.
    [5]
    谢丹, 刘晓燕, 毕远林, 等. 基于高通量测序分析刺梨果渣自然发酵过程中细菌群落结构及多样性[J]. 食品工业科技,2019,40(22):110−114. [Xie Dan, Liu Xiaoyan, Bi Yuanlin, et al. Bacterial community structure and diversity during Rosa roxburghii pomace fermentation based on high-throughput sequencing analysis[J]. Science and Technology of Food Industry,2019,40(22):110−114.
    [6]
    刘晓柱, 张远林, 李银凤, 等. 高通量测序技术分析刺梨自然发酵过程中细菌多样性[J]. 中国酿造,2020,39(8):82−85. [Liu Xiaozhu, Zhang Yuanlin, Li Yinfeng, et al. Analysis of bacterial diversity during natural fermentation of Rosa roxburghii based on high-throughput sequencing[J]. China Brewing,2020,39(8):82−85. doi: 10.11882/j.issn.0254-5071.2020.08.016
    [7]
    刘晓柱, 李银凤, 于志海, 等. 刺梨自然发酵过程中非酿酒酵母多样性分析[J]. 微生物学报, 2020, 60(8): 1696-1708.

    Liu Xiaozhu, Li Yinfeng, Yu Zhihai, et al. Biodiversity of non-Saccharomyces yeasts during natural fermentation of Rosa roxburghii[J]. Acta Microbiologica Sinica, 2020, 60(8): 1696-1708.
    [8]
    赵湖冰, 黎华, 田野, 等. 一株刺梨非酿酒酵母的分离鉴定、生理特性及混菌发酵研究[J]. 食品工业科技,2020,41(16):114−120. [Zhao Hubing, Li Hua, Tian Ye, et al. Isolation, identification, physiological characteristics and mixed fermentation of a non-Saccharomyces cerevisiae from Rosa roxburghii[J]. Science and Technology of Food Industry,2020,41(16):114−120.
    [9]
    刘晓柱, 赵湖冰, 李银凤, 等. 一株刺梨葡萄汁有孢汉逊酵母的鉴定及酿酒特性分析[J]. 食品与发酵工业,2020,46(8):97−104. [Liu Xiaozhu, Zhao Hubing, Li Yinfeng, et al. Identification and oenological properties analysis of a strain of Hanseniaspora uvarum from Rosa roxburghii[J]. Food and Fermentation Industries,2020,46(8):97−104.
    [10]
    马媛, 耿伟涛, 王金菊, 等. 乳酸菌代谢与食品风味物质的形成[J]. 中国调味品,2019,44(1):159−163, 172. [Ma Yuan, Geng Weitao, Wang Jinju, et al. Lactic acid bacteria metabolism and formation of food flavor substances[J]. China Condiment,2019,44(1):159−163, 172. doi: 10.3969/j.issn.1000-9973.2019.01.037
    [11]
    Albertin W, Zimmer A, Miot-Sertier C, et al. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity[J]. Applied Microbiology and Biotechnology. 2017, 101(20): 7603−7620.
    [12]
    Cui C H, Jeon B M, Fu Y, et al. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides[J]. Applied Microbiology and Biotechnology. 2019, 103(17): 7003-7015.
    [13]
    刘晓柱, 张远林, 黎华, 等. β-葡萄糖苷酶在酒类酿造中研究进展[J]. 中国酿造,2020,39(6):8−12. [Liu Xiaozhu, Zhang Yuanlin, Li Hua, et al. Research progress on β-glucosidase in alcoholic drink-brewing[J]. China Brewing,2020,39(6):8−12. doi: 10.11882/j.issn.0254-5071.2020.06.002
    [14]
    张阳, 江璐, 郭志君, 等. 利用β-葡萄糖苷酶提高葡萄酒香气的研究进展[J]. 现代食品科技,2020,36(4):316−324. [Zhang Yang, Jiang Lu, Guo Zhijun, et al. Improving wine aroma by using β-glucosidase: A review[J]. Modern Food Science and Technology,2020,36(4):316−324.
    [15]
    Vervoort Y, Herrera-Malaver B, Mertens S, et al. Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavouring[J]. Journal of Applied of Microbiology. 2016, 121(3): 721−33.
    [16]
    汤晓宏, 胡文效, 蒋锡龙, 等. 葡萄酒酿造过程中产β-葡萄糖苷酶酵母菌研究进展[J]. 中国酿造,2020,39(4):7−12. [Tang Xiaohong, Hu Wenxiao, Jiang Xilong, et al. Research progress on β-glucosidase-producing yeast in the brewing process of wine[J]. China Brewing,2020,39(4):7−12. doi: 10.11882/j.issn.0254-5071.2020.04.002
    [17]
    倪晓丰, 赵宾, 王东旭, 等. 硫酸二乙酯化学诱变选育高核糖核酸酿酒酵母及培养基组成优化[J]. 中国酿造,2018,37(8):32−36. [Ni Xiaofeng, Zhao Bin, Wang Dongxu, et al. Breeding of Saccharomyces cerevisiae with high RNA content by DES chemical mutagenesis and optimization of medium components[J]. China Brewing,2018,37(8):32−36. doi: 10.11882/j.issn.0254-5071.2018.08.008
    [18]
    温智慧, 李敬知, 冯瑞琪, 等. EMS诱变高异丁醇耐受性酿酒酵母的筛选[J]. 中国酿造,2018,37(10):66−71. [Wen Zhihui, Li Jingzhi, Feng Ruiqi, et al. Screening of Saccharomyces cerevisiae with high isobutanol tolerance by EMS mutagenesis[J]. China Brewing,2018,37(10):66−71. doi: 10.11882/j.issn.0254-5071.2018.10.013
    [19]
    张媛媛, 苏敏, 朴春红, 等. 微生物来源的β-葡萄糖苷酶在食品工业中应用进展[J]. 食品工业科技,2019,40(16):329−335. [Zhang Yuanyuan, Su Min, Piao Chunhong, et al. Progress on the β-Glucosidase from microganisms and its applications in food industry[J]. Science and Technology of Food Industry,2019,40(16):329−335.
    [20]
    OIV. 2019. Compendium of international methods for wine and must analysis (Vol. 1). Paris, France.
    [21]
    刘晓柱, 黎华, 李银凤, 李婷婷, 等. 接种异常威克汉姆酵母对空心李果酒理化特性及香气组分的影响[J]. 食品科技,2020,45(11):21−27. [Liu Xiaozhu, Li Hua, Li Yinfeng, et al. Effects of inoculation Wickerhamomyces anomalus on the physicochemical property and aroma profile of Prunus Salicina Lindl. cv ‘Kongxinli’ fruit wine[J]. Food Science and Technology,2020,45(11):21−27.
    [22]
    王婧, 张莉, 张宏海, 等. 产β-葡萄糖苷酶酿酒酵母菌株的化学诱变选育及产酶条件优化[J]. 食品工业科技,2016,37(9):139−146. [Wang Jing, Zhang Li, Zhang Honghai, et al. Chemical mutation of strain and optimization of production β-Glucosidase from Saccharomyces cerevisiae[J]. Science and Technology of Food Industry,2016,37(9):139−146.
    [23]
    Liu X Z, Li Y F, Yu Z H, et al. Screening and characterisation of β-glucosidase production strains from Rosa roxburghii Tratt[J]. International Journal of Food Engineering, 2021, 17(1): 1−9.
    [24]
    Ye M, Yue T, Yuan Y. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation[J]. FEMS Yeast Research,2014,14(6):873−82. doi: 10.1111/1567-1364.12175
    [25]
    Pérez-Torrado R, Barrio E, Querol A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids[J]. Crit Rev Food Science and Nutrition,2018,58(11):1780−1790. doi: 10.1080/10408398.2017.1285751
    [26]
    阎贺静, 张鸣宇, 孙康, 等. 野生酿酒酵母和葡萄汁有孢汉逊酵母混菌发酵对玫瑰香葡萄酒香气的影响[J]. 食品与发酵工业,2020,46(11):165−171. [Yan Hejing, Zhang Mingyu, Sun Kang, et al. Effects of the co-fermentation of Saccharomyces cerevisiae and Hanseniaspora uvarum on aroma of Muscat wine[J]. Food and Fermentation Industries,2020,46(11):165−171.
    [27]
    Beatriz Padilla, Jose V. Gil, Paloma Manzanares. Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking[J]. 2018, 4(3).
    [28]
    Escribano-Viana R, González-Arenzana L, Portu J, Garijo P, et al. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non- Saccharomyces/Saccharomyces yeasts[J]. Food Research International,2018,112:17−24. doi: 10.1016/j.foodres.2018.06.018
    [29]
    Baffi M A, Tobal T, Henrique J, et al. A novel β-glucosidase from Sporidiobolus pararoseus: Characterization and application in winemaking[J]. Journal of Food Science 2011, 76(7): C997−1002.
    [30]
    李红娟, 孔维府, 周新明, 等. 蛇龙珠新品系葡萄酒香气成分分析及评价[J]. 中国酿造,2020,39(12):164−170. [Li Hongjuan, Kong Weifu, Zhou Xinming, et al. Analysis and evaluation of aroma components in wine brewed with new variety of Cabernet Gernischt[J]. China Brewing,2020,39(12):164−170. doi: 10.11882/j.issn.0254-5071.2020.12.031
    [31]
    刘政海, 董志刚, 李晓梅, 等. 黄土高原地区干红葡萄酒香气组分分析[J]. 食品与发酵工业,2020,46(24):204−209. [Liu Zhenghai, Dong Zhigang, Li Xiaomei, et al. Aroma components of dry red wine brewed by different grape varieties in Loess Plateau[J]. Food and Fermentation Industries,2020,46(24):204−209.

Catalog

    Article Metrics

    Article views (310) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return