MIAO Nan, ZHANG Xin, WANG Shoucheng, et al. Identification of Red Wine Storage Years based on Electronic Tongue and EEMD-WOA-LSSVM Model[J]. Science and Technology of Food Industry, 2021, 42(19): 275−282. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120105.
Citation: MIAO Nan, ZHANG Xin, WANG Shoucheng, et al. Identification of Red Wine Storage Years based on Electronic Tongue and EEMD-WOA-LSSVM Model[J]. Science and Technology of Food Industry, 2021, 42(19): 275−282. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120105.

Identification of Red Wine Storage Years based on Electronic Tongue and EEMD-WOA-LSSVM Model

More Information
  • Received Date: December 13, 2020
  • Available Online: August 10, 2021
  • In order to achieve identification of different storage years of red wine, an electronic tongue identification method based on ensemble empirical modal decomposition(EEMD), whale optimization algorithm (WOA) and least square support vector machine (LSSVM) was proposed. The voltammetry electronic tongue was used to collect the "fingerprint" information of the aged red wine with four storage years, and then the ensemble empirical modal decomposition was used to carry out the original signal of the electronic tongue. The scale decomposition obtained a set of intrinsic mode functions, and finally obtained its singular spectral entropy and Hilbert marginal spectrum as feature data. Finally, the whale optimization algorithm was used to optimize the parameters of the least square support vector machine, and the analysis model of red wine storage age was established. The experimental results showed that the accuracy, precision, recall, F1-score and Kappa coefficient of EEMD-WOA-LSSVM model were 97.5%, 97.75%, 97.5%, 0.98 and 0.97, respectively, which had discrimination better performance for storage year of red wine compared with SVM, GA-LSSVM and PSO-LSSVM. This research can provide a technical reference and research approach of red wine storage year.
  • [1]
    张萍, 刘宏伟. 应用ICP-MS/MS快速测定红酒中的多种微量元素[J]. 食品科学,2019,40(2):259−263. [Zhang P, Liu H W. Rapid multi-element analysis of red wine by inductively coupled plasma tandem mass spectrometry[J]. Food Science,2019,40(2):259−263. doi: 10.7506/spkx1002-6630-20180102-001
    [2]
    Mollo A, Sixto A, Falchi L, et al. Zinc determination in Tannat wine by direct injection onto graphite tube: Electrothermal AAS as an alternative to flames AAS[J]. Microchemical Journal,2017,135:239244.
    [3]
    Seeger T S, Rosa F C, Bizzi C A, et al. Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry[J]. Spectrochimica Acta Part B Atomic Spectroscopy,2015,105:136−140. doi: 10.1016/j.sab.2014.11.002
    [4]
    Martínez David, Grindlay G, Gras L, et al. Determination of cadmium and lead in wine samples by means of dispersive liquid–liquid microextraction coupled to electrothermal atomic absorption spectrometry[J]. Journal of Food Composition and Analysis,2018(67):178−183.
    [5]
    Ozbek N, Akman S. Determination of boron in Turkish wines by microwave plasma atomic emission spectrometry[J]. LWT-Food Science and Technology,2015,61(2):532−535. doi: 10.1016/j.lwt.2014.11.047
    [6]
    Laitila J E, Suvanto J, Salminen J P. Liquid chromatography-tandem mass spectrometry reveals detailed chromatographic fingerprints of anthocyanins and anthocyanin adducts in red wine[J]. Food Chemistry,2019,294(OCT. 1):138−151.
    [7]
    姚月凤, 王家勤, 滑金杰, 等. 电子舌在工夫红茶甜纯滋味特征评价中的应用[J]. 食品科学,2019,40(18):236−241. [Yao Y F, Wang J Q, Hua J J, et al. Application of electronic tongue in the evaluation of sweet taste quality of congou black tea[J]. Food Science,2019,40(18):236−241. doi: 10.7506/spkx1002-6630-20181012-100
    [8]
    马泽亮, 殷廷家, 国婷婷, 等. 采用电子舌法检测橙汁及白酒的品牌及纯度[J]. 食品工业科技,2018,39(8):190−194. [Ma Z L, Yin T J, Guo T T, et al. The brand and purity of orange juice and liquor were tested by electronic tongue method[J]. Science and Technology of Food Industry,2018,39(8):190−194.
    [9]
    刘双印, 徐龙琴, 李振波, 等. 基于PCA-MCAFA-LSSVM的养殖水质pH值预测模型[J]. 农业机械学报,2014,45(5):239−246. [Liu S Y, Xu L Q, Li Z B, et al. Forecasting model for pH value of aquaculture water quality based on PCA-MCAFA-LSSVM[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(5):239−246. doi: 10.6041/j.issn.1000-1298.2014.05.037
    [10]
    Elamine Y, Inacio P M C, Lyoussi B, et al. Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination[J]. Sensors and Actuators,2019,B285(APR.):24−33.
    [11]
    Sobrino-Gregorio L, Bataller R, Soto J, et al. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue[J]. Food Control,2018,91:254−260. doi: 10.1016/j.foodcont.2018.04.003
    [12]
    Lu L, Hu X, Tian S, et al. Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue[J]. Analytica Chimica Acta,2016:11−19.
    [13]
    Cai T, Wu H, Qin J, et al. In vitro evaluation by PCA and AHP of potential antidiabetic properties of lactic acid bacteria isolated from traditional fermented food[J]. LWT,2019,115:108455. doi: 10.1016/j.lwt.2019.108455
    [14]
    支瑞聪, 赵镭, 高海燕, 等. 基于时频域特征融合的龙井茶品质判定[J]. 中国食品学报,2018,18(9):303−310. [Zhi R C, Zhao L, Gao H Y, et al. Quality recognition of longjing tea based on time and frequency-domain feature fusion[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(9):303−310.
    [15]
    史庆瑞, 马泽亮, 周智, 等. 基于电子舌和模式识别的中成药品辨识方法研究[J]. 电子测量与仪器学报,2017,31(7):1081−1088. [Shi Q R, Ma Z L, Zhou Z, et al. Research on Chinese patent medicine identification method based on electronic tongue technology and pattern recognition[J]. Journal of Electronic Measurement and Instrumentation,2017,31(7):1081−1088.
    [16]
    Yücelbaş Ş, Yücelbaş C, Tezel G, et al. Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal[J]. Expert Systems with Applications,2018,102:193−206. doi: 10.1016/j.eswa.2018.02.034
    [17]
    Wu Z, Huang N E. Ensemble eempirical mode mode decompositionde composition: A noisenoise-assisted assisted data data analysis analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1−41. doi: 10.1142/S1793536909000047
    [18]
    国婷婷, 殷廷家, 杨正伟, 等. 基于WPT-IAF-ELM的小麦储存年限电子舌检测分析[J]. 农业机械学报,2019,50(S1):404−410. [Guo T T, Yin T J, Yang Z W, et al. Detection and analysis of wheat storage year using electronic tongue based on wpt-iaf-elm[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(S1):404−410.
    [19]
    Shi Q R, Guo T T, Yin T J, et al. Classification of pericarpium citri reticulatae of different ages by using a voltammetric electronic tongue system[J]. International Journal of Electrochemical Science,2018,13(12):11359−11374.
    [20]
    徐龙琴, 李乾川, 刘双印, 等. 基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测[J]. 农业工程学报,2016,32(3):202−209. [XU L Q, LI Q C, LIU S Y, et al. Prediction of pH value in industrialized aquaculture based on ensemble empirical mode decomposition and improved artificial bee colony algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(3):202−209. doi: 10.11975/j.issn.1002-6819.2016.03.029
    [21]
    Suykens, Johan A K. Least squares support vector machines[J]. International Journal of Circuit Theory & Applications,2002,27(6):605−615.
    [22]
    王小杨, 罗多, 孙韵琳, 等. 基于ABC-SVM和PSO-RF的光伏微电网日发电功率组合预测方法研究[J]. 太阳能学报,2020,41(3):177−183. [Wang X Y, Luo D, Sun Y L, et al. Research on the combination prediction method of daily power generation of PV micro-grid based on ABC-SVM and PSO-RF[J]. Journal of Solar Energy,2020,41(3):177−183.
    [23]
    Medani K B O, Sayah S, Bekrar A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system[J]. Electric Power Systems Research,2018,163:696−705.
    [24]
    Mafarja M M, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing,2017,260:302−312. doi: 10.1016/j.neucom.2017.04.053
    [25]
    于露, 金龙哲, 徐明伟, 等. 基于HHT分解光电容积脉搏波信号的人体血液流变信息评估[J]. 浙江大学学报(工学版),2020,54(2):340−347, 397. [Yu L, Jin L Z, Xu M W, et al. Human hemorheology information evaluation based on Hilbert-Huang transform to decompose photoplethysmography signal[J]. Journal of Zhejiang University: Engineering Science,2020,54(2):340−347, 397. doi: 10.3785/j.issn.1008-973X.2020.02.015
    [26]
    陈虹屹, 王小敏, 郭进, 等. 基于EEMD奇异熵的高速道岔裂纹伤损检测[J]. 振动. 测试与诊断, 2016, 36(5): 845-851, 1019-1020.

    Chen H Y, Wang X M, Guo J, et al. Defect detection of high-speed turnout based on eemd singular entropy[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(5): 845-851.
    [27]
    Zhihua Y, Qian Z, Feng Z, et al. Hilbert spectrum analysis of piecewise stationary signals and its application to texture classification[J]. Digital Signal Processing,2018,82:1−10. doi: 10.1016/j.dsp.2018.07.020
  • Related Articles

    [1]SHI Qilong, LIU Jing, ZHAO Ya. Numerical Simulation of Protein Denaturation of Scallop Adductors during Heating Based on Temperature Distribution and Water Status Distribution[J]. Science and Technology of Food Industry, 2025, 46(5): 239-247. DOI: 10.13386/j.issn1002-0306.2024030367
    [2]MA Yonghui, LIU Guishan, HE Jianguo, KANG Ningbo, CHEN Shoutao, YIN Junjie, LIU Mengqi, JIA Lili. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9-17. DOI: 10.13386/j.issn1002-0306.2021110311
    [3]WANG Ya-juan, ZHANG Feng-juan, TENG Jian-wen, WEI Bao-yao, WANG Qin-zhi. Numerical Simulation of Microwave Vacuum Drying Kinetics of Carrot Chips[J]. Science and Technology of Food Industry, 2020, 41(18): 17-23. DOI: 10.13386/j.issn1002-0306.2020.18.003
    [4]ZHU Kai, LI Yan-jie, WANG Ya-bo, WANG Jin-shan. Internal Water Phase Changes and Surface Moisture Loss Kinetics of Broad Bean Seeds during Dehydration[J]. Science and Technology of Food Industry, 2020, 41(17): 51-57. DOI: 10.13386/j.issn1002-0306.2020.17.009
    [5]LI Chun-hui, ZHANG Min, AI Wen-ting, SHAO Ting-ting, LIU Wei, ZHU Sai-sai. Effects of different temperature field responses on postharvest storage quality of Cucurbita pepo L.[J]. Science and Technology of Food Industry, 2018, 39(2): 272-277,284. DOI: 10.13386/j.issn1002-0306.2018.02.051
    [6]DU Jing, LIU Tao, XU Ze, LI Chun-mei. Numberical simulation and experiment verification study on low temperature spray-drying of persimmon pulp[J]. Science and Technology of Food Industry, 2015, (21): 237-241. DOI: 10.13386/j.issn1002-0306.2015.21.041
    [7]LI Jing, JIN Guang-yuan, ZHANG Min, CUI Zheng-wei, ZHONG Jian-xun. Numerical study on spout fluidization dynamics in pulsed- spout microwave- vacuum dryer[J]. Science and Technology of Food Industry, 2015, (11): 79-83. DOI: 10.13386/j.issn1002-0306.2015.11.008
  • Cited by

    Periodical cited type(9)

    1. 尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
    2. 王宇昂,刘晓鹏,宋少云,曹梅丽,张永林. 基于多耦合物理场的“香菇-热风”互作过程分析. 武汉轻工大学学报. 2024(06): 94-102 .
    3. 张瑞,李国伟,刘扬,兰海鹏,张永成,范修文. 坚果干燥技术研究现状分析及展望. 新疆农机化. 2023(02): 34-38+48 .
    4. 肖更生,林可为,沈乔眉,刘东杰,马路凯,王锋. 岭南特色水果干燥加工技术研究进展. 轻工学报. 2023(04): 1-10 .
    5. 刘烨,陈鹏枭,朱文学,樊梦珂,吴建章,蒋萌蒙. 农产品干燥过程数值模拟研究现状及进展. 食品与发酵工业. 2023(16): 331-339 .
    6. 王雪妃,王田,许铭强,张艳艳,承春平,杜雨桐,陈恺,李焕荣. 赛买提鲜杏整果热风干燥特性及水分迁移规律研究. 食品与发酵工业. 2023(20): 91-99 .
    7. 王泽林,刘芳,耿文广,高玲,张大鹏,李子淳,张潇. 苹果切片对流干燥过程热湿影响因素模拟. 煤气与热力. 2022(12): 14-19 .
    8. 李佳欢,杨斌,任佳媛,金文松,孙淑静,胡开辉. 热风干燥温度对荷叶离褶伞干燥特性及挥发性风味物质的影响. 菌物学报. 2021(12): 3304-3319 .
    9. 蒋华彬,白洁,张小飞,李经伟,李玉美,郭宏,彭义交. 气流膨化过程中马铃薯方便粥水分变化动力学模型及品质变化分析. 食品科学. 2021(23): 137-144 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (243) PDF downloads (26) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return