LI Zhao, QIN Rong, YUAN Xiaorui, et al. Effects of High Pressure Processing on Gel Properties of Carp Surimi Containing Magnesium Chloride [J]. Science and Technology of Food Industry, 2021, 42(16): 53−58. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120081.
Citation: LI Zhao, QIN Rong, YUAN Xiaorui, et al. Effects of High Pressure Processing on Gel Properties of Carp Surimi Containing Magnesium Chloride [J]. Science and Technology of Food Industry, 2021, 42(16): 53−58. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120081.

Effects of High Pressure Processing on Gel Properties of Carp Surimi Containing Magnesium Chloride

More Information
  • Received Date: December 08, 2020
  • Available Online: July 05, 2021
  • In order to explore the effects of high pressure processing (HPP) on low-salt carp surimi, the improvements of carp surimi with magnesium chloride 2% NaCl and 0.3% MgCl2 under different pressures on the gelation yield, water retention, color, texture, gel strength and rheological properties were studied. The results showed that the gel quality of carp surimi could be significantly improved by appropriate pressure treatment combined with MgCl2. When the treatment pressure was 200 MPa, the cooking yield, water holding capacity, texture and gel strength of carp surimi gel reached the maximum value (93.14%, 95.24%, 3327.25 g, 3277 g, respectively). Appropriate pressure treatment could improve storage modulus (G') and less affect the color of carp surimi gel. Therefore, high pressure processing combined with magnesium chloride could improve the gel properties of low-salt carp surimi and provide a theoretical basis for the development of low-salt fresh water surimi products.
  • [1]
    杜洪振, 孙钦秀, 杨振, 等. 转谷氨酰胺酶对鲤鱼肌原纤维蛋白乳化活性和凝胶特性的影响[J]. 食品工业科技,2019,40(6):126−130, 278.
    [2]
    杨明. 马铃薯淀粉及转谷氨酰胺酶对鲤鱼肌原纤维蛋白功能特性的研究[D]. 哈尔滨: 东北农业大学, 2014.
    [3]
    崔旭海, 毕海丹, 崔晓莹, 等. 不同食用蛋白的添加对鲤鱼鱼糜流变和凝胶特性的影响[J]. 食品工业科技,2018,39(16):195−200, 225.
    [4]
    Cando D, Herranz B, Borderías A J, et al. Effect of high pressure on reduced sodium chloride surimi gels[J]. Food Hydrocolloids,2015,51:176−187. doi: 10.1016/j.foodhyd.2015.05.016
    [5]
    范大明, 焦熙栋. 电磁场和电场改善鱼糜制品凝胶特性的机制及应用[J]. 中国食品学报,2019(1):1−11.
    [6]
    Xiong Y, Li Q, Miao S, et al. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum[J]. Innovative Food Science and Emerging Technologies,2019,54:225−234. doi: 10.1016/j.ifset.2019.04.013
    [7]
    Petcharat T, Benjakul S. Effect of gellan incorporation on gel properties of bigeye snapper surimi[J]. Food Hydrocolloids,2018,77:746−753. doi: 10.1016/j.foodhyd.2017.11.016
    [8]
    Ye T, Dai H, Lin L, et al. Employment of κ-carrageenan and high pressure processing for quality improvement of reduced NaCl surimi gels[J]. Journal of Food Processing and Preservation,2019,43(9):e14074.
    [9]
    Feng J, Cao A, Cai L, et al. Effects of partial substitution of NaCl on gel properties of fish myofibrillar protein during heating treatment mediated by microbial transglutaminase[J]. LWT-Food Science and Technology,2018,93:1−8. doi: 10.1016/j.lwt.2018.03.018
    [10]
    余永名, 李晓丽, 刘宇彤, 等. 漂洗液中氯化镁浓度对鲢鱼鱼糜凝胶特性的影响[J]. 食品工业科技,2016,37(7):322−327.
    [11]
    Chen X, Tume R K, Xiong Y, et al. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods[J]. Critical Reviews in Food Science and Nutrition,2018,58(17):2981−3003. doi: 10.1080/10408398.2017.1347557
    [12]
    Wang J, Li Z, Zheng B, et al. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin[J]. LWT-Food Science and Technology,2019,100:381−390. doi: 10.1016/j.lwt.2018.10.053
    [13]
    潘杰. 超高压和氯化镁对鸡肉糜凝胶特性的影响及机制[D]. 合肥: 合肥工业大学, 2017.
    [14]
    De Marchi M, Manuelian C L, Ton S, et al. Prediction of sodium content in commercial processed meat products using near infrared spectroscopy[J]. Meat Science,2017,125:61−65. doi: 10.1016/j.meatsci.2016.11.014
    [15]
    丁习林, 王桂瑛, 王雪峰, 等. 肉制品加工中镁盐部分替代氯化钠的应用研究进展[J]. 食品工业科技,2019,40(17):327−332, 339.
    [16]
    魏朝贵, 吴菊清, 邵俊花, 等. KCl和MgCl2部分替代NaCl对猪肉肌原纤维蛋白乳化凝胶特性的影响[J]. 食品科学,2014,35(5):89−95. doi: 10.7506/spkx1002-6630-201405018
    [17]
    Tamm A, Bolumar T, Bajovic B, et al. Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl[J]. Innovative Food Science and Emerging Technologies,2016,36:294−302. doi: 10.1016/j.ifset.2016.07.010
    [18]
    谢婷婷, 姚静, 李月双, 等. MgCl2对低钠盐κ-卡拉胶-肌球蛋白凝胶特性的影响[J]. 食品科学,2017,38(1):35−40. doi: 10.7506/spkx1002-6630-201701006
    [19]
    Wang Y, Zhou Y, Li P, et al. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions[J]. Food Chemistry,2018,269:236−243. doi: 10.1016/j.foodchem.2018.06.107
    [20]
    王健一, 郭泽镔, 李致瑜, 等. 超高压处理对低盐鱼糜制品凝胶特性的影响研究[J]. 食品工业,2018(2):58−62.
    [21]
    赵岩岩, 王书彦, 李钊, 等. γ-聚谷氨酸对鲤鱼肉糜凝胶特性的影响[J]. 食品研究与开发,2020,41(20):73−78. doi: 10.12161/j.issn.1005-6521.2020.20.012
    [22]
    计红芳, 李莎莎, 张令文, 等. 豌豆蛋白对鸡肉糜热诱导凝胶品质特性与微观结构的影响[J]. 食品科学,2020,41(4):74−79. doi: 10.7506/spkx1002-6630-20181229-359
    [23]
    Zhao S, Li N, Li Z, et al. Shelf life of fresh chilled pork as affected by antimicrobial intervention with nisin, tea polyphenols, chitosan, and their combination[J]. International Journal of Food Properties,2019,22(1):1047−1063. doi: 10.1080/10942912.2019.1625918
    [24]
    Li K, Liu J Y, Fu L, et al. Effect of gellan gum on functional properties of low-fat chicken meat batters[J]. Journal of Texture Studies,2019,50(2):131−138. doi: 10.1111/jtxs.12379
    [25]
    Ma X S, Yi S M, Yu Y M, et al. Changes in gel properties and water properties of Nemipterus virgatus surimi gel induced by high-pressure processing[J]. LWT-Food Science and Technology,2015,61(2):377−384. doi: 10.1016/j.lwt.2014.12.041
    [26]
    Tabilo-Munizaga G, Barbosa-Cánovas G V. Pressurized and heat-treated surimi gels as affected by potato starch and egg white: Microstructure and water-holding capacity[J]. LWT-Food Science and Technology,2005,38(1):47−57. doi: 10.1016/j.lwt.2004.04.013
    [27]
    Ma F, Chen C, Zheng L, et al. Effect of high pressure processing on the gel properties of salt-soluble meat protein containing CaCl2 and κ-carrageenan[J]. Meat Science,2013,95(1):22−26. doi: 10.1016/j.meatsci.2013.04.025
    [28]
    Moreno H M, Bargiela V, Tovar C A, et al. High pressure applied to frozen flying fish (Parexocoetus brachyterus) surimi: Effect on physicochemical and rheological properties of gels[J]. Food Hydrocolloids,2015,48:127−134. doi: 10.1016/j.foodhyd.2015.01.029
    [29]
    陈燕婷, 林露, 高星, 等. 超高压对带鱼鱼糜凝胶特性及其肌原纤维蛋白结构的影响[J]. 食品科学,2019,40(21):115−120. doi: 10.7506/spkx1002-6630-20181021-223
    [30]
    王健一. 超高压处理对低盐鱼糜制品品质特性影响的研究[D]. 福州: 福建农林大学, 2018.
    [31]
    才卫川, 张坤生, 任云霞. TG酶协同超高压处理对鸡肉糜制品品质的影响[J]. 食品科学,2014,35(18):22−27. doi: 10.7506/spkx1002-6630-201418005
    [32]
    Zhang Z, Yang Y, Zhou P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry,2017,217:678−686. doi: 10.1016/j.foodchem.2016.09.040
    [33]
    Sutloet P, Sompongse W, Morioka K. Effect of protease inhibitors on proteolytic degradation of rohu (Labeo rohita) gel[J]. International Journal of Food Science and Technology,2018,53(11):2509−2514. doi: 10.1111/ijfs.13844
    [34]
    Cao Y, Xia T, Zhou G, et al. The mechanism of high pressure-induced gels of rabbit myosin[J]. Innovative Food Science and Emerging Technologies,2012,16:41−46. doi: 10.1016/j.ifset.2012.04.005
    [35]
    Yin T, Park J W. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates[J]. Food chemistry,2015,180:42−47. doi: 10.1016/j.foodchem.2015.02.021
    [36]
    Galazka V B, Smith D, Ledward D A, et al. Complexes of bovine serum albumin with sulphated polysaccharides: effects of pH, ionic strength and high pressure treatment[J]. Food Chemistry,1999,64(3):303−310. doi: 10.1016/S0308-8146(98)00104-6
  • Cited by

    Periodical cited type(10)

    1. 邓少颖,孙健,朱红,岳瑞雪,张毅,张文婷,马晨. 双螺杆挤压甘薯膨化圈工艺优化及其品质评价. 食品研究与开发. 2025(02): 108-118 .
    2. 刘晓飞,吴浚滢,赵香香,戚月娜,刘畅,张娜. 超微粉碎对4种米的理化特性及抗氧化能力的影响. 粮食与油脂. 2023(04): 26-31 .
    3. 阮蕴莹,邓媛元,张雁,魏振承,唐小俊,李萍,张元,王智明,刘光,张名位. 不同葡萄糖当量值预消化大米膨化粉的理化性质和结构特性. 食品科学. 2023(14): 29-36 .
    4. 肖家喜,段映羽,邹晓琴,张名位,张瑞芬,刘磊,张元,马勤. 冲调米粉酶解耦合挤压膨化工艺优化及其产品性质分析. 中国粮油学报. 2023(08): 49-57 .
    5. 张新振,梁进,李雪玲,孙玥,高洋,王冉,刘杰梅,徐雪野,张歌兴,李贝贝,钟杨,周颖娣,李志鑫. 蓝莓渣复合籼米冲调粉的配方优化及品质分析. 中国粮油学报. 2023(09): 35-41 .
    6. 王晨,王燕,吴卫国,廖卢艳. 双螺杆挤压复合方便粥配方优化及品质分析. 食品工业科技. 2022(05): 245-254 . 本站查看
    7. 许立益,余宏达,江冬怡,郑经绍,林嘉尉,黄苇. 紫米与籼米复配比对复配粉性质及紫米粉丝品质的影响. 食品工业科技. 2022(17): 114-121 . 本站查看
    8. 赵起圆,宋春丽,周恪驰,任健,孙天颖. 挤压膨化对全籽粒玉米粉加工特性的研究. 食品科技. 2022(09): 138-143 .
    9. 张新振,杨涛,蒋依婷,琚飞龙,高洋,孙玥,李雪玲,梁进. 蓝莓渣复合籼米膨化工艺优化及抗氧化活性研究. 食品与机械. 2022(10): 194-200 .
    10. 王崑仑,管立军,高扬,任传英,严松,李家磊,季妮娜,李波,周野. 糙米速食米粥工艺优化及其结构表征. 农业工程学报. 2022(S1): 310-320 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (333) PDF downloads (36) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return