FU Wenqian, GURI Nailsieli, LIU Yuming, et al. Establishment of the Kinetic Model of Microwave Drying of Traditional Surface Patch in Soup[J]. Science and Technology of Food Industry, 2021, 42(16): 44−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120068.
Citation: FU Wenqian, GURI Nailsieli, LIU Yuming, et al. Establishment of the Kinetic Model of Microwave Drying of Traditional Surface Patch in Soup[J]. Science and Technology of Food Industry, 2021, 42(16): 44−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120068.

Establishment of the Kinetic Model of Microwave Drying of Traditional Surface Patch in Soup

More Information
  • Received Date: December 08, 2020
  • Available Online: June 14, 2021
  • In this paper, the influence of microwave power, thermal power and loading capacity on the drying characteristics of Xinjiang traditional surface patch in soup were studied. Based on the variation trend of dry base moisture content, drying water loss rate and water ratio of the surface patch in microwave drying process, the water loss rule of the surface patch in microwave drying process was obtained. The results showed that: With the increasing of microwave power, the greater of the firepower, the smaller of the loading capacity, the faster decreased of the moisture content of dry basis, and the greater of the change of drying rate and moisture ratio. And the curves of lnMR-t and ln(−lnMR)−lnt showed that the Page equation could better reflect the microwave drying law of the surface. The Page equation under different microwave power (G) was as follows: ln(−lnMR)1=8.3519×10−3G+8.1588×10−6G2−1.5967+(0.45334+2.9425×10−3G−2.285×10−6G2)lnt. Under different microwave firepower (H), the Page equation was ln(−lnMR)2=2.1635×10−2H−6.44063×10−5H2−4.39914+(1.4709−4.7125×10−3H+2.0625×10−5H2)lnt. Under different loads (S), the Page equation was ln(−lnMR)3 =4.8846×10−2S−4.7936×10−4S2−1.57847+(0.12282+2.71275×10−2S−1.319375×10−4S2)lnt. Combined with the surface quality and factory production, the better microwave drying combination of power, firepower and surface loading capacity was 550 W, 60% and 100 g, which was verified to have strong feasibility and would provide the technical support for the surface microwave drying process.
  • [1]
    宋蕊, 白羽嘉, 阿衣古丽·阿力木, 等. 响应面法优化新疆汤饭羊肉块工艺[J]. 食品科技,2021,46(1):127−133.
    [2]
    魏益民, 王振华, 于晓磊, 等. 挂面干燥动力学研究[J]. 中国粮油学报,2020,35(3):14−22. doi: 10.3969/j.issn.1003-0174.2020.03.004
    [3]
    魏益民, 王振华, 于晓磊, 等. 挂面干燥过程水分迁移规律研究[J]. 中国食品学报,2017,17(12):1−12.
    [4]
    韩旭, 董京磊, 宫俊杰, 等. 果蔬干燥技术的研究进展[J]. 中国食物与营养,2020,26(9):37−40. doi: 10.3969/j.issn.1006-9577.2020.09.009
    [5]
    唐小闲, 段振华, 任爱清, 等. 即食慈姑片微波干燥特性及动力学模型研究[J]. 食品与机械,2020,36(10):177−182, 227.
    [6]
    李涛. 农产品微波干燥工艺的研究[D]. 江西: 江西农业大学, 2013.
    [7]
    田华. 生姜微波干燥动力学模型构建[J]. 保鲜与加工,2020,20(1):127−132. doi: 10.3969/j.issn.1009-6221.2020.01.021
    [8]
    王杰. 挂面干燥工艺及过程控制研究[D]. 北京: 中国农业科学院, 2014.
    [9]
    郭颖, 陆启玉. 不同烘干温度挂面中淀粉和蛋白组分变化研究[J]. 粮食与油脂,2015,28(2):13−16. doi: 10.3969/j.issn.1008-9578.2015.02.004
    [10]
    Inazu T, Iwasaki K, Furuta T. Effect of temperature and relative humidity on drying kinetics of fresh Japanese noodle (udon)[J]. LWT-Food Science and Technology,2002,35(8):649−655. doi: 10.1006/fstl.2002.0921
    [11]
    Pronyk C, Cenkowski S, Muir W E, et al. Optimum processing conditions of instant Asian noodles in superheated steam[J]. Drying Technology,2008,26(2):204−210. doi: 10.1080/07373930701831457
    [12]
    Pronyk C, Cenkowski S, Muir W E. Drying kinetics of instant Asian noodles processed in superheated steam[J]. Drying Technology,2010,28(2):304−314. doi: 10.1080/07373930903534545
    [13]
    Ogawa T, Kobayashi T, AdachiS. Prediction of pasta drying process based on athermogravimetric analysis[J]. Journal of Food Engineering,2012,111(1):129−134. doi: 10.1016/j.jfoodeng.2012.01.011
    [14]
    De Temmerman J, Verboven P, Ramon H. Modelling of transient moisture concentration of semolina pasta during air drying[J]. Journal of Food Engineering,2007,80(3):892−903. doi: 10.1016/j.jfoodeng.2006.08.004
    [15]
    Villeneuve S, Gélinas P. Drying kinetics of whole durum wheat pasta according to temperature and relative humidity[J]. LWT-Food Science and Technology,2007,40(3):465−471. doi: 10.1016/j.lwt.2006.01.004
    [16]
    Inazu T, Iwasaki K. Mathematical evaluation of effective moisture diffusivity in fresh Japanese noodles (udon) by regular regime theory[J]. Journal of Food Science,2000,65(3):440−444. doi: 10.1111/j.1365-2621.2000.tb16024.x
    [17]
    Inazu T, Iwasaki K, Furuta T. Effect of air velocity on fresh Japanese noodle (Udon) drying[J]. LWT-Food Science and Technology,2003,36(2):277−280. doi: 10.1016/S0023-6438(02)00185-8
    [18]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 25005-2010 感官分析方便面感官评价方法[S]. 北京: 中国标准出版社, 2010.
    [19]
    张梦超. 非油炸方便型马铃薯热干面的品质改良及其干燥特性研究[D]. 湖北: 华中农业大学, 2019.
    [20]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准食品中水分的测定[S]. 北京: 中国标准出版社, 2016.
    [21]
    武亮, 张影全, 王振华, 等. 挂面干燥特性与模型拟合研究[J]. 中国食品学报,2019(19):125−135.
    [22]
    许晴晴, 陈杭君, 郜海燕, 等. 真空冷冻和热风干燥对蓝莓品质的影响[J]. 食品科学,2014(35):64−68.
    [23]
    Menges H O, Erekin C. Mathematical modeling of thin layer drying of golden apples[J]. Journal of Food Engineering,2005,77(1):141−145.
    [24]
    Abalone R, Gaston A, Cassinera A, et al. Thin layer drying of amaranth seeds[J]. Biosystems Engineering,2005,93(2):421−424.
    [25]
    Biach D A, Young W R, Franks P J S. Thin layers of plankton: Formation by shear and death by diffusion[J]. Deep Sea Research Part I Oceanographic Research Papers,2008,55(3):277−295. doi: 10.1016/j.dsr.2007.11.009
    [26]
    毛志幸, 孙辉, 陈宗道. 白果微波干燥特性及干燥动力学模型研究[J]. 食品工业科技,2017,38(22):11−16, 21.
    [27]
    宋树杰, 王蒙. 熟化紫薯片微波干燥特性及数学模型[J]. 食品与发酵工业,2020,46(2):85−93.
    [28]
    王英, 张建强, 李永武, 等. 不同微波条件对速熟绿豆水分含量影响的研究[J]. 粮食科技与经济,2013(38):54−55, 58.
    [29]
    崔满满. 干燥方法对甜瓜片干燥特性及品质影响的研究[D]. 乌鲁木齐: 新疆农业大学, 2012.
    [30]
    刘旺星, 陈雄飞, 余佳佳, 等. 胡萝卜微波干燥特性及动力学模型[J]. 食品工业科技,2019,40(9):74−78, 83.
    [31]
    李雨朋, 赵一霖, 赵城彬, 等. 营养冲调粥流化床干燥特性及动力学模型的建立[J]. 食品科学,2019,40(21):108−114.
    [32]
    王金丽, 邓怡国, 黄晖. 菠萝叶纤维干燥特性试验研究[C]// 上海: 2010年国际农业工程大会, 2010国际农业工程大会现代农机新技术应用研讨会分会场论文集, 2010: 6.
  • Cited by

    Periodical cited type(12)

    1. 赵星,张嘉楠,张一鸣,金欣欣,苏俏,宋亚辉,李玉荣,王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报. 2025(01): 226-233 .
    2. 魏松丽,张丽霞,孙强,芦鑫,靳淑秀,孙晓静,金璐,游静,黄纪念. 真空干燥花生油体的条件优化及性质表征. 河南工业大学学报(自然科学版). 2024(01): 8-16 .
    3. 张亚靖,陈复生,王颖颖,刘晨,郑乾坤,殷丽君. 油脂体的提取方法及其在食品中应用的研究进展. 中国油脂. 2024(08): 131-136 .
    4. 单子明,彭郁,秦琛强,傅娆,李茉,倪元颖,温馨. 植物油脂体提取及稳定性评价研究进展. 食品科学. 2024(19): 19251-19262 .
    5. 忠梦,刘白宁,华威,王锋,荣瑞芬,段玉权. 不同包装核桃仁氧化机制分析. 食品科学. 2024(20): 65-73 .
    6. 尹国友,杨卓凡,曾姣,张莹莹,孙婕,王召. 大豆油体包埋韭菜籽油微胶囊工艺优化及其稳定性评价. 食品科技. 2024(11): 267-275 .
    7. 李天赐,陈毅保,刘昆仑,陈复生,杨趁仙,段晓杰,朱婷伟. 界面蛋白对水酶法提取植物油脂过程中乳状液稳定性影响的研究进展. 食品科学. 2023(17): 188-195 .
    8. 王广婕,赵焕宇,苏成成,韦旋,吴梦果,单迪,黄萍,马佳歌,侯俊财,姜瞻梅. 油脂体的组成、结构及氧化稳定性研究进展. 食品科学. 2023(21): 293-302 .
    9. 官梦姝,冯雪,刘月,朱秀清,姜瞻梅,江连洲,侯俊财. 3种天然酚类物质对大豆油脂体稳定性及体外消化性的影响. 食品科学. 2022(03): 10-18 .
    10. 秦晓鹏,黄沙沙,聂成镇,禹晓,邓乾春,相启森,朱莹莹. 微波处理对萌动亚麻籽酚类化合物油相迁移的影响. 食品科学技术学报. 2022(03): 124-136 .
    11. 汪锦,应瑞峰,王耀松,黄梅桂. 超声-水酶法对高品质薄壳山核桃油释放的影响. 食品与发酵工业. 2022(18): 177-182 .
    12. 刘子豪,梅雅欣,彭郁,傅娆,秦琛强,倪元颖,温馨. 外源蛋白对大豆油脂体稳定性的影响. 食品科学. 2022(22): 1-9 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (245) PDF downloads (21) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return