CAO Qiqi, HUANG Nizi, TENG Jianwen, et al. Effect of Grinding on the Physicochemical and Functional Properties of the Passion Fruit Peel Residue[J]. Science and Technology of Food Industry, 2021, 42(16): 28−36. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120044.
Citation: CAO Qiqi, HUANG Nizi, TENG Jianwen, et al. Effect of Grinding on the Physicochemical and Functional Properties of the Passion Fruit Peel Residue[J]. Science and Technology of Food Industry, 2021, 42(16): 28−36. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120044.

Effect of Grinding on the Physicochemical and Functional Properties of the Passion Fruit Peel Residue

More Information
  • Received Date: December 06, 2020
  • Available Online: June 17, 2021
  • In the food industry, different particle size of dietary fiber will directly affect the quality of products. To study the physicochemical properties and functional activities of dietary fiber with different particle size could expand its application. Pigments were removed from passion fruit peel by 70% ethanol, and the passion fruit peel residue(PFPR) were prepared. The physicochemical properties and functional activities of PFPR were studied by 6 kinds of powder with particle sizes ranging from 217.00 to 20.23 μm. With the decreasing of powder particle size, the volume density, bulk density and the physical and swelling capacity, water holding capacity, oil holding capacity, water combining capacity, cation exchange capacity and viscosity of different fractions of PFER powder, increased first and then decreased, while the angle of repose increased gradually. The particle size of 145.67 μm powder at the dialysis time of 30 min was the best effect and the glucose dialysis retardation index value was 30.55%. Antioxidant results showed that 20.23 μm powder at the concentration of 80 mg/mL, had the best DPPH·(60.28%) and ABTS+·(23.04%) scavenging effects. There was a significant correlation between polyphenol content of PFER and antioxidant capacity. The theoretical reference for the application of PFPR was provided.
  • [1]
    种俸亭, 黄子珍, 滕建文, 等. 百香果皮体外抑制葡萄糖吸收抗氧调节高血糖大鼠肠道菌群结构的作用[J]. 食品科学, 2021, 42(5): 193−200.
    [2]
    Dos Reis L C R, Facco E M P, Salvador M, et al. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit[J]. Journal of Food Science and Technology,2018,55(7):2679−2691. doi: 10.1007/s13197-018-3190-2
    [3]
    Williams G M, Tapsell L C, O'Brien C L, et al. Gut microbiome responses to dietary intake of grain-based fibers with the potential to modulate markers of metabolic disease: A systematic literature review[J]. Nutrition Reviews,2020.
    [4]
    赵萌萌, 党斌, 张文刚, 等. 超微粉碎对青稞麸皮粉微观结构及功能特性的影响[J]. 农业工程学报,2020,36(8):278−286. doi: 10.11975/j.issn.1002-6819.2020.08.034
    [5]
    李荷. 不同粒度老化雷竹笋粉体特性及在饼干制作中应用的研究[D]. 杭州: 浙江工商大学, 2015.
    [6]
    李渐鹏, 尚玉荣, 刘润书, 等. 麦麸超微粉-淀粉混合体系理化特性研究[J]. 食品工业科技,2016,37(3):92−96.
    [7]
    王安建, 魏书信, 侯传伟. 超微粉碎改性玉米皮膳食纤维技术研究[J]. 食品科技,2010,35(9):194−196.
    [8]
    Ma M, Mu T. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095
    [9]
    陈洁, 张蕴华, 王稳新, 等. 马铃薯块粒径对其全粉及面条品质的影响[J]. 河南工业大学学报(自然科学版),2019,40(6):1−6.
    [10]
    李曼, 雷霞, 陶丽芬, 等. 改性蕨菜膳食纤维对面团质构及酥性饼干品质的影响[J]. 农产品加工,2017,45(17):1−4.
    [11]
    唐明明, 孙汉巨, 赵金龙, 等. 超微粉碎对水芹粉末理化性质及抗氧化活性的影响[J]. 现代食品科技,2019,35(7):55−65.
    [12]
    Caliskan G, Dirim S N. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders[J]. Powder Technology,2016,287:308−314. doi: 10.1016/j.powtec.2015.10.019
    [13]
    陈绪龙, 赵国巍, 廖正根, 等. 不同粒径三七粉体物理特性及体外溶出行为的比较[J]. 中华中医药杂志,2011,26(9):1971−1974.
    [14]
    吴进, 郭艳, 张爽, 等. 石榴皮粉粒径对其理化及抗氧化特性的影响[J]. 西北农林科技大学学报(自然科学版),2019,47(5):132−138.
    [15]
    陈良云. 紫果西番莲果皮膳食纤维制备工艺及其性质研究[D]. 广州: 华南理工大学, 2013.
    [16]
    陶姝颖, 郭晓晖, 令博, 等. 改性葡萄皮渣膳食纤维的理化特性和结构[J]. 食品科学,2012,33(15):171−177.
    [17]
    罗欢. 木瓜渣膳食纤维的分离提取及理化性质研究[D]. 重庆: 西南大学, 2010.
    [18]
    Dudonne S, Vitrac X, Coutiere P, et al. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays[J]. Journal of Agricultural and Food Chemistry,2009,57(5):1768−1774. doi: 10.1021/jf803011r
    [19]
    Nsor-Atindana J, Zhong F, Mothibe K J. In vitro hypoglycemic and cholesterol lowering effects of dietary fiber prepared from cocoa (Theobroma cacao L.) shells[J]. Food & Function,2012,3(10):1044−1052.
    [20]
    周葵. 西番莲综合加工关键技术研究[D]. 南宁: 广西大学, 2015.
    [21]
    Nguyen N M P, Le T T, Vissenaekens H, et al. In vitro antioxidant activity and phenolic profiles of tropical fruit by-products[J]. International Journal of Food Science & Technology,2019,54(4):1169−1178.
    [22]
    Raghavarao K S M S, Raghavendra S N, Rastogi N K. Potential of coconut dietary fiber[J]. Indian Coconut Journal,2008(6):2−7.
    [23]
    Tejada-Ortigoza V, García-Amezquita L E, Serna-Saldívar S O, et al. The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments[J]. Food Science and Technology International,2017,23(5):396−402. doi: 10.1177/1082013217694301
    [24]
    Yalegama L L W C, Nedra Karunaratne D, Sivakanesan R, et al. Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel[J]. Food Chemistry,2013,141(1):124−130. doi: 10.1016/j.foodchem.2013.02.118
    [25]
    Navarro-González I, García-Valverde V, García-Alonso J, et al. Chemical profile, functional and antioxidant properties of tomato peel fiber[J]. Food Research International,2011,44(5):1528−1535. doi: 10.1016/j.foodres.2011.04.005
    [26]
    李伦. 脱脂米糠膳食纤维的研究[D]. 无锡: 江南大学, 2009.
    [27]
    Peerajit P, Chiewchan N, Devahastin S. Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues[J]. Food Chemistry,2012,132(4):1891−1898. doi: 10.1016/j.foodchem.2011.12.022
    [28]
    李怡彬, 赖谱富, 陈君琛, 等. 胭脂李多酚纯化工艺及其黄嘌呤氧化酶抑制活性[J]. 福建农业学报,2016,31(5):521−526. doi: 10.3969/j.issn.1008-0384.2016.05.015
    [29]
    Ashutosh M, Shivesh J. In vitro postprandial glucose lowering effects of dietary fibers isolated from Amarindus indica and Cassia fistula seeds[J]. American Journal of Food Technology,2011,6(5):435−440. doi: 10.3923/ajft.2011.435.440
    [30]
    Nuñez-López M A, Paredes-López O, Reynoso-Camacho R. Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests[J]. Journal of Agricultural and Food Chemistry,2013,61(46):10981−10986. doi: 10.1021/jf403834x
    [31]
    张岩, 邹琴艳, 吴帅, 等. 不同石榴品种果实不同部位酚类物质含量和抗氧化能力比较[J]. 农学学报,2020,10(12):57−67. doi: 10.11923/j.issn.2095-4050.cjas20191200293
    [32]
    陶颜娟. 小麦麸皮膳食纤维的改性及应用研究[D]. 无锡: 江南大学, 2008.

Catalog

    Article Metrics

    Article views (277) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return