Citation: | SONG Xinyu, LI Dapeng. Research Progress of Plant Flavonoids Regulating JNK Signal Pathway to Intervene with Oxidative Stress-related Diseases[J]. Science and Technology of Food Industry, 2021, 42(24): 454−460. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120005. |
[1] |
KOYANO S, ITO M, TAKAMATSU N, et al. A novel Jun N-terminal kinase (JNK)-binding protein that enhances the activation of JNK by MEK kinase 1 and TGF-beta-activated kinase 1[J]. Febs Letters,1999,457(3):385−388. doi: 10.1016/S0014-5793(99)01084-4
|
[2] |
DU J, XI L, LEI B, et al. Structural requirements of isoquinolones as novel selective c-Jun N-terminal kinase 1 inhibitors: 2D and 3D QSAR analyses[J]. Chemical Biology & Drug Design,2011,77(4):248−254.
|
[3] |
WESTON C R, AND DAVIS R J. The JNK signal transduction pathway[J]. Current Opinion in Genetics & Development,2002,12(1):14−21.
|
[4] |
马平, 张吟. JNK信号通路与胰岛β细胞凋亡[J]. 中国现代应用药学,2018,35(6):942−946. [MA Ping, ZHANG Yin. JNK signaling pathway and islet beta cell apoptosis[J]. Chinese Journal of Modern Applied Pharmacy,2018,35(6):942−946.
|
[5] |
REES A, DODD G, SPENCER J. The effects of flavonoids on cardiovascular health: A review of human intervention trials and implications for cerebrovascular function[J]. Nutrients, 2018, 10(12).
|
[6] |
HAITAO P, TAO J, GUOFANG L, et al. The Effect of minimally invasive hematoma aspiration on the JNK signal transduction pathway after experimental intracerebral hemorrhage in rats[J]. International Journal of Molecular Sciences,2016,17(5):710. doi: 10.3390/ijms17050710
|
[7] |
ANTONIOU X, FALCONI M, MARINO D D, et al. JNK3 as a therapeutic target for neurodegenerative diseases[J]. Journal of Alzhmers Disease,2011,24(4):633−642. doi: 10.3233/JAD-2011-091567
|
[8] |
BARR R K, BOGOYEVITCH M A. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs)[J]. Int J Biochem Cell Biol,2001,33(11):1047−1063. doi: 10.1016/S1357-2725(01)00093-0
|
[9] |
LIU J, LIN A N. Role of JNK activation in apoptosis: A double-edged sword[J]. Cell Research,2005,15(1):36−42. doi: 10.1038/sj.cr.7290262
|
[10] |
LOPEZ-BERGAMI P, RONAI Z. Requirements for PKC-augmented JNK activation by MKK4/7[J]. Int J Biochem Cell Biol,2008,40(5):1055−64. doi: 10.1016/j.biocel.2007.11.011
|
[11] |
GAZON H, BENOIT B, JEAN-MICHEL M, et al. Hijacking of the AP-1 signaling pathway during development of ATL[J]. Frontiers in Microbiology,2017,8:2686.
|
[12] |
KARIN M, GALLAGHER E. From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance[J]. IUBMB Life,2005,57(4-5):283−295.
|
[13] |
XIE X, KAOUD T S, EDUPUGANTI R, et al. C-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through up-regulation of Notch1 via activation of c-Jun[J]. Oncogene,2017,36(18):2599−2608. doi: 10.1038/onc.2016.417
|
[14] |
SABAPATHY K. Role of the JNK pathway in human diseases[J]. Progress in Molecular Biology & Translational Science,2012,106:145−169.
|
[15] |
MATSUZAWA A, ICHIJO H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling[J]. Biochimica et Biophysica Acta General Subjects,2008,1780(11):1325−1336. doi: 10.1016/j.bbagen.2007.12.011
|
[16] |
王文广. PCSK9对钙化性主动脉瓣疾病病变的影响及机制研究[D]. 天津: 天津医科大学, 2017.
WANG Wenguang. The mechanism of PCSK9 promoting the progression of calcific aortic valve disease[D]. Tianjin: Tianjin Medical University, 2017.
|
[17] |
ZHANG J, LI X, HAN X, et al. Targeting the thioredoxin system for cancer therapy[J]. Trends in Pharmacological Sciences,2017,38(9):794−808. doi: 10.1016/j.tips.2017.06.001
|
[18] |
KATAGIRI K, MATSUZAWA A, ICHIJO H. Regulation of apoptosis signal-regulating kinase 1 in redox signaling[J]. Methods in Enzymology,2010,474:277−288.
|
[19] |
TANG R X, KONG F Y, FAN B F, et al. HBx activates FasL and mediates HepG2 cell apoptosis through MLK3-MKK7-JNKs signal module[J]. World Journal of Gastroenterology,2012,18(13):1485−1495. doi: 10.3748/wjg.v18.i13.1485
|
[20] |
LEI K, DAVIS R J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2432-2437.
|
[21] |
吕慧. Nrf2-Keap1信号通路与多柔比星对白血病细胞K562作用的研究[D]. 苏州: 苏州大学, 2018.
LV Hui. Research on the Nrf2-Keap1 signaling pathway and effect of Doxorubicin in leukemia K562 cells[D]. Suzhou: Suzhou University, 2018.
|
[22] |
LUO S, RUBINSZTEIN D C. BCL2L11/BIM: A novel molecular link between autophagy and apoptosis[J]. Autophagy,2013,9(1):104−105. doi: 10.4161/auto.22399
|
[23] |
LORIN S, PIERRON G, RYAN K M, et al. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy[J]. Autophagy,2010,6(1):153−154. doi: 10.4161/auto.6.1.10537
|
[24] |
HABERZETTL, P, HILL B G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response[J]. Redox Biol,2013,1(1):56−64. doi: 10.1016/j.redox.2012.10.003
|
[25] |
BAYANI U, SINGH A V, ZAMBONI P, MAHAJAN R T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options[J]. Current Neuropharmacology,2009,7(1):65−74. doi: 10.2174/157015909787602823
|
[26] |
DZAMKO N, ZHOU J, HUANG Y, et al. Parkinson's disease-implicated kinases in the brain; insights into disease pathogenesis[J]. Frontiers in Molecular Neuroence,2014,7:57.
|
[27] |
GOEDERT M. Alpha-synuclein and neurodegenerative diseases[J]. Nature Reviews,2001,2(7):492−501. doi: 10.1038/35081564
|
[28] |
陆蓓亦. 妊娠期糖尿病妊娠中晚期胰岛素抵抗及胰岛B细胞功能的研究[J]. 中国妇幼保健,2015,30(36):6455−6458. [LU B Y. Insulin resistance and islet B cell function in middle and late pregnancy of gestational diabetes mellitus[J]. Maternal and Child Health Care of China,2015,30(36):6455−6458.
|
[29] |
SÁNCHEZ-CHÁVEZ G, TERESA P R M, RIESGO-ESCOVAR J R, et al. Insulin stimulated-glucose transporter glut 4 is expressed in the retina[J]. PLoS One,2012,7(12):52959. doi: 10.1371/journal.pone.0052959
|
[30] |
JOHN C, MOHAMED Yusof N, ABDUL Aziz S, et al. Maternal cognitive impairment associated with gestational diabetes mellitus-a review of potential contributing mechanisms[J]. International Journal of Molecular Sciences, 2018, 19(12): 3894.
|
[31] |
YANG Y, GONG W, JIN C, et al. Naringin ameliorates experimental diabetic renal fibrosis by inhibiting the ERK1/2 and JNK MAPK signaling pathways[J]. Journal of Functional Foods,2018,50:53−62. doi: 10.1016/j.jff.2018.09.020
|
[32] |
刘颖慧, 牟新, 周迪夷, 等. 基于JNK信号通路探讨桑叶有效成分改善胰岛素抵抗的机制研究[J]. 中国中药杂志,2019,44(5):1019−1025. [LIU Y H, MOU X, ZHOU D Y. Mechanism of effective components of Mori Folium in alleviating insulin resistance based on JNK signaling pathway[J]. China Journal of Chinese Materia Medica,2019,44(5):1019−1025.
|
[33] |
吕慧婕, 朱责梅, 陈维昭, 等. 二氢杨梅素通过下调JNK信号拮抗高糖诱导的PC12细胞凋亡[J]. 生物化学与生物物理进展,2018,45(6):663−671. [LV H J, ZHU Z M, CHEN W Z, et al. Dihydromyricetin antagonized high glucose induced apoptosis of PC12 cells by down regulating JNK signal[J]. Progress in Biochemistry and Biophysics,2018,45(6):663−671.
|
[34] |
DIAZ-CANESTRO C, MERLINI M, BONETTI N R, et al. Sirtuin 5 as a novel target to blunt blood–brain barrier damage induced by cerebral ischemia/reperfusion injury [J]. International Journal of Cardiology, 2018, 260: 148-155.
|
[35] |
SHARMA V, BELL R M, YELLON D M. Targeting reperfusion injury in acute myocardial infarction: A review of reperfusion injury pharmacotherapy[J]. Expert Opinion on Pharmacotherapy,2012,13(8):1153−1175. doi: 10.1517/14656566.2012.685163
|
[36] |
NIJBOER C H, KOOIJ M A V D, BEL F V, et al. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury[J]. Brain Behavior & Immunity,2010,24(5):812−821.
|
[37] |
KAPIL S, SALMA M, SANA K, et al. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol[J]. International Journal of Molecular Sciences,2017,18(5):1001.
|
[38] |
LI C, WANG T, ZHANG C Y, et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways[J]. Gene,2016,577(2):275−280. doi: 10.1016/j.gene.2015.12.012
|
[39] |
CHANG C, ZHAO Y, SONG G, et al. Resveratrol protects hippocampal neurons against cerebral ischemia-reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats[J]. Journal of Neuroimmunology,2018,315:9−14. doi: 10.1016/j.jneuroim.2017.11.015
|
[40] |
SHIN W H, PARK S J, KIM E J. Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats[J]. Life Sciences,2006,79(2):130−137. doi: 10.1016/j.lfs.2005.12.033
|
[41] |
KAUL T, CREDLE J, HAGGERTY T, et al. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease[J]. BMC Neurosci,2011,12:79. doi: 10.1186/1471-2202-12-79
|
[42] |
CHEN H, XU Y, LV Y, et al. Proanthocyanidins exert a neuroprotective effect via ROS/JNK signaling in MPTP-induced Parkinson’s disease models in vitro and in vivo[J]. Molecular Medicine Reports,2018,18(6):4913−4921.
|
[43] |
QU Y, LIU Y, ZHU Y, et al. Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats[J]. Neurological Research An Interdisciplinary Quarterly Journal,2018,40(3):211−220.
|
[44] |
JIAN M, GAO Shanshan, YANG Haijie, et al. Neuroprotective effects of proanthocyanidins, natural flavonoids derived from plants, on rotenone-induced oxidative stress and apoptotic cell death in human neuroblastoma SH-SY5Y cells[J]. Frontiers in Neuroence,2018,12:369. doi: 10.3389/fnins.2018.00369
|
[45] |
KIM S M, PARK Y J, SHIN M S, et al. Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model[J]. Bioorganic & Medicinal Chemistry Letters,2017,27(23):5207−5212.
|
[46] |
GOMEZ-PINILLA F, NGUYEN T T J. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders[J]. Nutritional Neuroscience,2012,15(3):127−133. doi: 10.1179/1476830511Y.0000000035
|
[47] |
ZHANG K, MA Z, WANG J, et al. Myricetin attenuated MPP +- induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells[J]. Neuropharmacology,2011,61(1−2):329−335. doi: 10.1016/j.neuropharm.2011.04.021
|
[48] |
叶莉莎, 韩园, 刘启星, 等. 姜黄素对阿尔茨海默病大鼠学习记忆及HMGB1和JNK表达的影响[J]. 中国病理生理杂志,2014,30(6):1114−1118. doi: 10.3969/j.issn.1000-4718.2014.06.027
|
[49] |
ZHAO L, WANG J L, WANG Y R, et al. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model[J]. Brain Research,2013,1492:33−35. doi: 10.1016/j.brainres.2012.11.019
|
[50] |
SUPINSKI G S, JI X, CALLAHAN L A. The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology,2009,297(3):825−834.
|
[51] |
GARCÍA-LAFUENTE A, GUILLAMON E, ROSTAGNO M, et al. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease[J]. Inflamm Res,2009,58(9):537−552. doi: 10.1007/s00011-009-0037-3
|
[52] |
REN Q, GUO F, TAO S, et al. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice[J]. Biomedicine & pharmacotherapy=Biomedecine & Pharmacotherapie,2020,122:109772.
|
[53] |
TOMAR A, VASISTH S, KHAN S I, et al. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade[J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology,2017,34:154−161.
|
[54] |
WANG C, QU Z, KONG L, et al. Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells[J]. Experimental & Molecular Pathology,2019,108:1−8.
|
[55] |
ZHAI K F, DUAN H, CUI C Y, et al. Liquiritin from Glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway[J]. Journal of Agricultural & Food Chemistry,2019,67(10):2856−2864.
|
[56] |
PARK S H, KIM J Y, CHEON Y H, et al. Protocatechuic acid attenuates osteoclastogenesis by downregulating JNK/c-Fos/NFATc1 signaling and prevents inflammatory bone loss in mice[J]. Phytotherapy Research Ptr,2016,30(4):604−612. doi: 10.1002/ptr.5565
|
[57] |
WANG J, GUO C, WEI Z, et al. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells[J]. Journal of Dairy Science,2016,99(4):3016−3022. doi: 10.3168/jds.2015-10330
|
[58] |
HUANG Y, SUN M, YANG X, et al. Baicalin relieves inflammation stimulated by lipopolysaccharide via upregulating TUG1 in liver cells[J]. Journal of Physiology and Biochemistry,2019,75(4):463−473. doi: 10.1007/s13105-019-00698-0
|
[59] |
CHEN C C, CHOW M P, HUANG W C, et al. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: Structure-activity relationships[J]. Molecular Pharmacology,2004,66(3):683−693.
|
[60] |
KIM Y J, SHIN Y, LEE K H, et al. Anethum graveloens flower extracts inhibited a lipopolysaccharide-induced inflammatory response by blocking iNOS expression and NF-κB activity in macrophages[J]. Journal of the Agricultural Chemical Society of Japan,2012,76(6):1122−1127.
|
[61] |
PARK J Y, LIM M S, KIM S I, et al. Quercetin-3-O-β-D-glucuronide suppresses lipopolysaccharide-induced JNK and ERK phosphorylation in LPS-challenged RAW264.7 cells[J]. Biomolecules & Therapeutics,2016,24(6):610−615.
|
[62] |
LIN M, LU S S, WANG A X, et al. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling[J]. Journal of Dermatological Science,2011,63(1):10−16. doi: 10.1016/j.jdermsci.2011.03.007
|
[63] |
刘佳慧. 芸香柚皮苷对OVA诱导过敏性哮喘免疫失衡的干预作用研究[D]. 长春: 吉林大学, 2018.
LIU J H. Intervention of naringin on immune imbalance induced by OVA[D]. Changchun: Jilin University, 2018.
|
[64] |
CHEN Y W, YANG W H, WONG M Y, et al. Curcumin inhibits thrombin-stimulated connective tissue growth factor (CTGF/CCN2) production through c-Jun NH2-terminal kinase suppression in human gingival fibroblasts[J]. Journal of Periodontology,2012,83(12):1546. doi: 10.1902/jop.2012.110641
|
[1] | “The full text download” [J]. Science and Technology of Food Industry, 2023, 44(17). |
[2] | “The full text download”[J]. Science and Technology of Food Industry, 2023, 44(15). |
[3] | “The full text download”[J]. Science and Technology of Food Industry, 2023, 44(12). |
[4] | “The full text download”[J]. Science and Technology of Food Industry, 2023, 44(1). |
[5] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(24). |
[6] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(23): 1-1. |
[7] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(21). |
[8] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(12). |
[9] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(10). |
[10] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(8). |