SONG Xinyu, LI Dapeng. Research Progress of Plant Flavonoids Regulating JNK Signal Pathway to Intervene with Oxidative Stress-related Diseases[J]. Science and Technology of Food Industry, 2021, 42(24): 454−460. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120005.
Citation: SONG Xinyu, LI Dapeng. Research Progress of Plant Flavonoids Regulating JNK Signal Pathway to Intervene with Oxidative Stress-related Diseases[J]. Science and Technology of Food Industry, 2021, 42(24): 454−460. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120005.

Research Progress of Plant Flavonoids Regulating JNK Signal Pathway to Intervene with Oxidative Stress-related Diseases

More Information
  • Received Date: December 01, 2020
  • Available Online: October 20, 2021
  • c-Jun N-terminal kinase (c-Jun N-terminal kinase, JNK) is a member of the mitogen-activated protein kinase (mitogen-activated protein kinase, MAPK) family. This signal transduction pathway is regulated by a series of kinases and participates in the regulation of physiological functions such as cell proliferation, differentiation, apoptosis, neuronal function and stress response, and mediates the occurrence of many diseases. Flavonoids in plant diets have the ability to resist oxidation, anti-inflammatory, and regulate vascular penetration, and can produce significant intervention effects on JNK-related diseases by regulating oxidative stress. This article introduces the research progress of plant flavonoids intervening oxidative stress-related diseases by regulating the JNK pathway, and provides reference for future research and application.
  • [1]
    KOYANO S, ITO M, TAKAMATSU N, et al. A novel Jun N-terminal kinase (JNK)-binding protein that enhances the activation of JNK by MEK kinase 1 and TGF-beta-activated kinase 1[J]. Febs Letters,1999,457(3):385−388. doi: 10.1016/S0014-5793(99)01084-4
    [2]
    DU J, XI L, LEI B, et al. Structural requirements of isoquinolones as novel selective c-Jun N-terminal kinase 1 inhibitors: 2D and 3D QSAR analyses[J]. Chemical Biology & Drug Design,2011,77(4):248−254.
    [3]
    WESTON C R, AND DAVIS R J. The JNK signal transduction pathway[J]. Current Opinion in Genetics & Development,2002,12(1):14−21.
    [4]
    马平, 张吟. JNK信号通路与胰岛β细胞凋亡[J]. 中国现代应用药学,2018,35(6):942−946. [MA Ping, ZHANG Yin. JNK signaling pathway and islet beta cell apoptosis[J]. Chinese Journal of Modern Applied Pharmacy,2018,35(6):942−946.
    [5]
    REES A, DODD G, SPENCER J. The effects of flavonoids on cardiovascular health: A review of human intervention trials and implications for cerebrovascular function[J]. Nutrients, 2018, 10(12).
    [6]
    HAITAO P, TAO J, GUOFANG L, et al. The Effect of minimally invasive hematoma aspiration on the JNK signal transduction pathway after experimental intracerebral hemorrhage in rats[J]. International Journal of Molecular Sciences,2016,17(5):710. doi: 10.3390/ijms17050710
    [7]
    ANTONIOU X, FALCONI M, MARINO D D, et al. JNK3 as a therapeutic target for neurodegenerative diseases[J]. Journal of Alzhmers Disease,2011,24(4):633−642. doi: 10.3233/JAD-2011-091567
    [8]
    BARR R K, BOGOYEVITCH M A. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs)[J]. Int J Biochem Cell Biol,2001,33(11):1047−1063. doi: 10.1016/S1357-2725(01)00093-0
    [9]
    LIU J, LIN A N. Role of JNK activation in apoptosis: A double-edged sword[J]. Cell Research,2005,15(1):36−42. doi: 10.1038/sj.cr.7290262
    [10]
    LOPEZ-BERGAMI P, RONAI Z. Requirements for PKC-augmented JNK activation by MKK4/7[J]. Int J Biochem Cell Biol,2008,40(5):1055−64. doi: 10.1016/j.biocel.2007.11.011
    [11]
    GAZON H, BENOIT B, JEAN-MICHEL M, et al. Hijacking of the AP-1 signaling pathway during development of ATL[J]. Frontiers in Microbiology,2017,8:2686.
    [12]
    KARIN M, GALLAGHER E. From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance[J]. IUBMB Life,2005,57(4-5):283−295.
    [13]
    XIE X, KAOUD T S, EDUPUGANTI R, et al. C-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through up-regulation of Notch1 via activation of c-Jun[J]. Oncogene,2017,36(18):2599−2608. doi: 10.1038/onc.2016.417
    [14]
    SABAPATHY K. Role of the JNK pathway in human diseases[J]. Progress in Molecular Biology & Translational Science,2012,106:145−169.
    [15]
    MATSUZAWA A, ICHIJO H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling[J]. Biochimica et Biophysica Acta General Subjects,2008,1780(11):1325−1336. doi: 10.1016/j.bbagen.2007.12.011
    [16]
    王文广. PCSK9对钙化性主动脉瓣疾病病变的影响及机制研究[D]. 天津: 天津医科大学, 2017.

    WANG Wenguang. The mechanism of PCSK9 promoting the progression of calcific aortic valve disease[D]. Tianjin: Tianjin Medical University, 2017.
    [17]
    ZHANG J, LI X, HAN X, et al. Targeting the thioredoxin system for cancer therapy[J]. Trends in Pharmacological Sciences,2017,38(9):794−808. doi: 10.1016/j.tips.2017.06.001
    [18]
    KATAGIRI K, MATSUZAWA A, ICHIJO H. Regulation of apoptosis signal-regulating kinase 1 in redox signaling[J]. Methods in Enzymology,2010,474:277−288.
    [19]
    TANG R X, KONG F Y, FAN B F, et al. HBx activates FasL and mediates HepG2 cell apoptosis through MLK3-MKK7-JNKs signal module[J]. World Journal of Gastroenterology,2012,18(13):1485−1495. doi: 10.3748/wjg.v18.i13.1485
    [20]
    LEI K, DAVIS R J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2432-2437.
    [21]
    吕慧. Nrf2-Keap1信号通路与多柔比星对白血病细胞K562作用的研究[D]. 苏州: 苏州大学, 2018.

    LV Hui. Research on the Nrf2-Keap1 signaling pathway and effect of Doxorubicin in leukemia K562 cells[D]. Suzhou: Suzhou University, 2018.
    [22]
    LUO S, RUBINSZTEIN D C. BCL2L11/BIM: A novel molecular link between autophagy and apoptosis[J]. Autophagy,2013,9(1):104−105. doi: 10.4161/auto.22399
    [23]
    LORIN S, PIERRON G, RYAN K M, et al. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy[J]. Autophagy,2010,6(1):153−154. doi: 10.4161/auto.6.1.10537
    [24]
    HABERZETTL, P, HILL B G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response[J]. Redox Biol,2013,1(1):56−64. doi: 10.1016/j.redox.2012.10.003
    [25]
    BAYANI U, SINGH A V, ZAMBONI P, MAHAJAN R T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options[J]. Current Neuropharmacology,2009,7(1):65−74. doi: 10.2174/157015909787602823
    [26]
    DZAMKO N, ZHOU J, HUANG Y, et al. Parkinson's disease-implicated kinases in the brain; insights into disease pathogenesis[J]. Frontiers in Molecular Neuroence,2014,7:57.
    [27]
    GOEDERT M. Alpha-synuclein and neurodegenerative diseases[J]. Nature Reviews,2001,2(7):492−501. doi: 10.1038/35081564
    [28]
    陆蓓亦. 妊娠期糖尿病妊娠中晚期胰岛素抵抗及胰岛B细胞功能的研究[J]. 中国妇幼保健,2015,30(36):6455−6458. [LU B Y. Insulin resistance and islet B cell function in middle and late pregnancy of gestational diabetes mellitus[J]. Maternal and Child Health Care of China,2015,30(36):6455−6458.
    [29]
    SÁNCHEZ-CHÁVEZ G, TERESA P R M, RIESGO-ESCOVAR J R, et al. Insulin stimulated-glucose transporter glut 4 is expressed in the retina[J]. PLoS One,2012,7(12):52959. doi: 10.1371/journal.pone.0052959
    [30]
    JOHN C, MOHAMED Yusof N, ABDUL Aziz S, et al. Maternal cognitive impairment associated with gestational diabetes mellitus-a review of potential contributing mechanisms[J]. International Journal of Molecular Sciences, 2018, 19(12): 3894.
    [31]
    YANG Y, GONG W, JIN C, et al. Naringin ameliorates experimental diabetic renal fibrosis by inhibiting the ERK1/2 and JNK MAPK signaling pathways[J]. Journal of Functional Foods,2018,50:53−62. doi: 10.1016/j.jff.2018.09.020
    [32]
    刘颖慧, 牟新, 周迪夷, 等. 基于JNK信号通路探讨桑叶有效成分改善胰岛素抵抗的机制研究[J]. 中国中药杂志,2019,44(5):1019−1025. [LIU Y H, MOU X, ZHOU D Y. Mechanism of effective components of Mori Folium in alleviating insulin resistance based on JNK signaling pathway[J]. China Journal of Chinese Materia Medica,2019,44(5):1019−1025.
    [33]
    吕慧婕, 朱责梅, 陈维昭, 等. 二氢杨梅素通过下调JNK信号拮抗高糖诱导的PC12细胞凋亡[J]. 生物化学与生物物理进展,2018,45(6):663−671. [LV H J, ZHU Z M, CHEN W Z, et al. Dihydromyricetin antagonized high glucose induced apoptosis of PC12 cells by down regulating JNK signal[J]. Progress in Biochemistry and Biophysics,2018,45(6):663−671.
    [34]
    DIAZ-CANESTRO C, MERLINI M, BONETTI N R, et al. Sirtuin 5 as a novel target to blunt blood–brain barrier damage induced by cerebral ischemia/reperfusion injury [J]. International Journal of Cardiology, 2018, 260: 148-155.
    [35]
    SHARMA V, BELL R M, YELLON D M. Targeting reperfusion injury in acute myocardial infarction: A review of reperfusion injury pharmacotherapy[J]. Expert Opinion on Pharmacotherapy,2012,13(8):1153−1175. doi: 10.1517/14656566.2012.685163
    [36]
    NIJBOER C H, KOOIJ M A V D, BEL F V, et al. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury[J]. Brain Behavior & Immunity,2010,24(5):812−821.
    [37]
    KAPIL S, SALMA M, SANA K, et al. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol[J]. International Journal of Molecular Sciences,2017,18(5):1001.
    [38]
    LI C, WANG T, ZHANG C Y, et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways[J]. Gene,2016,577(2):275−280. doi: 10.1016/j.gene.2015.12.012
    [39]
    CHANG C, ZHAO Y, SONG G, et al. Resveratrol protects hippocampal neurons against cerebral ischemia-reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats[J]. Journal of Neuroimmunology,2018,315:9−14. doi: 10.1016/j.jneuroim.2017.11.015
    [40]
    SHIN W H, PARK S J, KIM E J. Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats[J]. Life Sciences,2006,79(2):130−137. doi: 10.1016/j.lfs.2005.12.033
    [41]
    KAUL T, CREDLE J, HAGGERTY T, et al. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease[J]. BMC Neurosci,2011,12:79. doi: 10.1186/1471-2202-12-79
    [42]
    CHEN H, XU Y, LV Y, et al. Proanthocyanidins exert a neuroprotective effect via ROS/JNK signaling in MPTP-induced Parkinson’s disease models in vitro and in vivo[J]. Molecular Medicine Reports,2018,18(6):4913−4921.
    [43]
    QU Y, LIU Y, ZHU Y, et al. Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats[J]. Neurological Research An Interdisciplinary Quarterly Journal,2018,40(3):211−220.
    [44]
    JIAN M, GAO Shanshan, YANG Haijie, et al. Neuroprotective effects of proanthocyanidins, natural flavonoids derived from plants, on rotenone-induced oxidative stress and apoptotic cell death in human neuroblastoma SH-SY5Y cells[J]. Frontiers in Neuroence,2018,12:369. doi: 10.3389/fnins.2018.00369
    [45]
    KIM S M, PARK Y J, SHIN M S, et al. Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model[J]. Bioorganic & Medicinal Chemistry Letters,2017,27(23):5207−5212.
    [46]
    GOMEZ-PINILLA F, NGUYEN T T J. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders[J]. Nutritional Neuroscience,2012,15(3):127−133. doi: 10.1179/1476830511Y.0000000035
    [47]
    ZHANG K, MA Z, WANG J, et al. Myricetin attenuated MPP +- induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells[J]. Neuropharmacology,2011,61(1−2):329−335. doi: 10.1016/j.neuropharm.2011.04.021
    [48]
    叶莉莎, 韩园, 刘启星, 等. 姜黄素对阿尔茨海默病大鼠学习记忆及HMGB1和JNK表达的影响[J]. 中国病理生理杂志,2014,30(6):1114−1118. doi: 10.3969/j.issn.1000-4718.2014.06.027
    [49]
    ZHAO L, WANG J L, WANG Y R, et al. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model[J]. Brain Research,2013,1492:33−35. doi: 10.1016/j.brainres.2012.11.019
    [50]
    SUPINSKI G S, JI X, CALLAHAN L A. The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology,2009,297(3):825−834.
    [51]
    GARCÍA-LAFUENTE A, GUILLAMON E, ROSTAGNO M, et al. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease[J]. Inflamm Res,2009,58(9):537−552. doi: 10.1007/s00011-009-0037-3
    [52]
    REN Q, GUO F, TAO S, et al. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice[J]. Biomedicine & pharmacotherapy=Biomedecine & Pharmacotherapie,2020,122:109772.
    [53]
    TOMAR A, VASISTH S, KHAN S I, et al. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade[J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology,2017,34:154−161.
    [54]
    WANG C, QU Z, KONG L, et al. Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells[J]. Experimental & Molecular Pathology,2019,108:1−8.
    [55]
    ZHAI K F, DUAN H, CUI C Y, et al. Liquiritin from Glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway[J]. Journal of Agricultural & Food Chemistry,2019,67(10):2856−2864.
    [56]
    PARK S H, KIM J Y, CHEON Y H, et al. Protocatechuic acid attenuates osteoclastogenesis by downregulating JNK/c-Fos/NFATc1 signaling and prevents inflammatory bone loss in mice[J]. Phytotherapy Research Ptr,2016,30(4):604−612. doi: 10.1002/ptr.5565
    [57]
    WANG J, GUO C, WEI Z, et al. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells[J]. Journal of Dairy Science,2016,99(4):3016−3022. doi: 10.3168/jds.2015-10330
    [58]
    HUANG Y, SUN M, YANG X, et al. Baicalin relieves inflammation stimulated by lipopolysaccharide via upregulating TUG1 in liver cells[J]. Journal of Physiology and Biochemistry,2019,75(4):463−473. doi: 10.1007/s13105-019-00698-0
    [59]
    CHEN C C, CHOW M P, HUANG W C, et al. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: Structure-activity relationships[J]. Molecular Pharmacology,2004,66(3):683−693.
    [60]
    KIM Y J, SHIN Y, LEE K H, et al. Anethum graveloens flower extracts inhibited a lipopolysaccharide-induced inflammatory response by blocking iNOS expression and NF-κB activity in macrophages[J]. Journal of the Agricultural Chemical Society of Japan,2012,76(6):1122−1127.
    [61]
    PARK J Y, LIM M S, KIM S I, et al. Quercetin-3-O-β-D-glucuronide suppresses lipopolysaccharide-induced JNK and ERK phosphorylation in LPS-challenged RAW264.7 cells[J]. Biomolecules & Therapeutics,2016,24(6):610−615.
    [62]
    LIN M, LU S S, WANG A X, et al. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling[J]. Journal of Dermatological Science,2011,63(1):10−16. doi: 10.1016/j.jdermsci.2011.03.007
    [63]
    刘佳慧. 芸香柚皮苷对OVA诱导过敏性哮喘免疫失衡的干预作用研究[D]. 长春: 吉林大学, 2018.

    LIU J H. Intervention of naringin on immune imbalance induced by OVA[D]. Changchun: Jilin University, 2018.
    [64]
    CHEN Y W, YANG W H, WONG M Y, et al. Curcumin inhibits thrombin-stimulated connective tissue growth factor (CTGF/CCN2) production through c-Jun NH2-terminal kinase suppression in human gingival fibroblasts[J]. Journal of Periodontology,2012,83(12):1546. doi: 10.1902/jop.2012.110641
  • Related Articles

    [1]“The full text download” [J]. Science and Technology of Food Industry, 2023, 44(17).
    [2]“The full text download”[J]. Science and Technology of Food Industry, 2023, 44(15).
    [3]“The full text download”[J]. Science and Technology of Food Industry, 2023, 44(12).
    [4]“The full text download”[J]. Science and Technology of Food Industry, 2023, 44(1).
    [5]“The full text download”[J]. Science and Technology of Food Industry, 2022, 43(24).
    [6]“The full text download”[J]. Science and Technology of Food Industry, 2022, 43(23): 1-1.
    [7]“The full text download”[J]. Science and Technology of Food Industry, 2022, 43(21).
    [8]“The full text download”[J]. Science and Technology of Food Industry, 2022, 43(12).
    [9]“The full text download”[J]. Science and Technology of Food Industry, 2022, 43(10).
    [10]“The full text download”[J]. Science and Technology of Food Industry, 2022, 43(8).

Catalog

    Article Metrics

    Article views (426) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return