Citation: | DONG Xiuyu, TANG Shiying, YANG Heqi, et al. Preparation of Nano-cellulose and Its Application in Food Field[J]. Science and Technology of Food Industry, 2021, 42(24): 434−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110291. |
[1] |
POLETTO M, JUNIOR H L, ZATTERA A J. Native cellulose: Structure, characterization and thermal properties[J]. Materials,2014,7(9):6105−6119. doi: 10.3390/ma7096105
|
[2] |
CHEN H Z. Biotechnology of lignocellulose[M]. Springer Netherlands, 2014.
|
[3] |
MITTAL A, KATAHIRA R, HIMMEL M E, et al. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility[J]. Biotechnology for Biofuels,2011,4(1):41−41. doi: 10.1186/1754-6834-4-41
|
[4] |
MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews,2011,40(7):3941−94. doi: 10.1039/c0cs00108b
|
[5] |
孙海涛, 邵信儒, 瞿照婷, 等. 玉米秸秆纳米纤维素的制备及表征[J]. 食品科学,2018,39(8):205−211. [SUN Haitao, SHAO Xinru, QU Zhaoting, et al. Preparation and characterization of corn straw nano cellulose[J]. Food Science,2018,39(8):205−211. doi: 10.7506/spkx1002-6630-201808032
|
[6] |
JOHAR N, AHMAD I, DUFRESNE A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk[J]. Industrial Crops and Products,2012,37(1):93−99. doi: 10.1016/j.indcrop.2011.12.016
|
[7] |
HERMANS P H, WEIDINGER A. X-ray studies on the crystallinity of cellulose[J]. Journal of Polymerence Part A: Polymer Chemistry,2010,4(2):135−144.
|
[8] |
OUN A A, RHIM J. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films[J]. Carbohydrate Polymers,2015,134:20−29. doi: 10.1016/j.carbpol.2015.07.053
|
[9] |
CHEN Y W, LEE H V, JUAN J C, et al. Production of new cellulose nanomaterial from red algae marine biomass gelidium elegans[J]. Carbohydrate Polymers,2016,151:1210−1219. doi: 10.1016/j.carbpol.2016.06.083
|
[10] |
HE Q, WANG Q, ZHOU H, et al. Highly crystalline cellulose from brown seaweed saccharina japonica: Isolation, characterization and microcrystallization[J]. Cellulose,2018,25(10):5523−5533. doi: 10.1007/s10570-018-1966-1
|
[11] |
MIHRANYAN A, LLAGOSTERAL A P, KARMHAG R, et al. Moisture sorption by cellulose powders of varying crystallinity[J]. International Journal of Pharmaceutics,2004,269(2):433−442. doi: 10.1016/j.ijpharm.2003.09.030
|
[12] |
RUAN C, ZHU Y, ZHOU X, et al. Effect of cellulose crystallinity on bacterial cellulose assembly[J]. Cellulose,2016,23(6):3417−3427. doi: 10.1007/s10570-016-1065-0
|
[13] |
FOSTER C E, MARTIN T M, PAULY M, et al. Comprehensive compositional analysis of plant cell walls(lignocellulosic biomass) part II: Carbohydrates[J]. Journal of Visualized Experiments,2010(37):36−41.
|
[14] |
PHANTHONG P, REUBROYCHAROEN P, HAO X, et al. Nanocellulose: Extraction and application[J]. Carbon Resources Conversion,2018,1(1):32−43. doi: 10.1016/j.crcon.2018.05.004
|
[15] |
LAVOINE N, DELOGES I, DUFRESNE A, et al. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review[J]. Carbohydrate Polymers,2012,90(2):735−764. doi: 10.1016/j.carbpol.2012.05.026
|
[16] |
ALEXANDRESCU L, SYVERUD K, GATTI A, et al. Cytotoxicity tests of cellulose nanofibril-based structures[J]. Cellulose,2013,20(4):1765−1775. doi: 10.1007/s10570-013-9948-9
|
[17] |
BRAS J, HASSAN M L, BRUZESSE C, et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops and Products,2010,32(3):627−633. doi: 10.1016/j.indcrop.2010.07.018
|
[18] |
GEORGE J, SABAPATHI S N. Cellulose nanocrystals: Synthesis, functional properties, and applications[J]. Nanotechnology, Science and Applications,2015,8:45−54.
|
[19] |
DAS K, RAY D, BANDYOPADHYAY N R, et al. Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, Nanoindentation, TGA and SEM[J]. Journal of Polymers and the Environment,2010,18(3):355−363. doi: 10.1007/s10924-010-0167-2
|
[20] |
KLEMM D, SCHUMAN D, KRAMER F, et al. Nanocellulose materials−different cellulose, different functionality[J]. Macromolecular Symposia,2010,280(1):60−71.
|
[21] |
XIANG Z, GAO W, CHEN L, et al. A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp[J]. Cellulose,2016,23(1):493−503. doi: 10.1007/s10570-015-0840-7
|
[22] |
MARTINEZSANZ M, LOPEZRUBIO A, LAGARON J M, et al. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers[J]. Carbohydrate Polymers,2011,85(1):228−236. doi: 10.1016/j.carbpol.2011.02.021
|
[23] |
BRINCHI L, COTANA F, FORTUNATI E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications[J]. Carbohydrate Polymers,2013,94(1):154−169. doi: 10.1016/j.carbpol.2013.01.033
|
[24] |
NECHYPORCHUK O, BELGACEM M N, BRAS J, et al. Production of cellulose nanofibrils: A review of recent advances[J]. Industrial Crops and Products,2016,93:2−25. doi: 10.1016/j.indcrop.2016.02.016
|
[25] |
ROSS P, MAYER R, BENZIMAN M. Cellulose biosynthesis and function in bacteria[J]. Microbiological Reviews,1991,55(1):35−58. doi: 10.1128/mr.55.1.35-58.1991
|
[26] |
汪丽粉, 李政, 贾士儒, 等. 细菌纤维素性质及应用的研究进展[J]. 微生物学通报,2014,41(8):1675−1683. [WANG Lifen, LI Zheng, JIA Shiru, et al. Research progress on properties and application of bacterial cellulose[J]. Bulletin of Microbiology,2014,41(8):1675−1683.
|
[27] |
AZEREDO H M C, ROSA M F, MATTOSO L H C. Nanocellulose in bio-based food packaging applications[J]. Industrial Crops and Products,2017,97:664−671. doi: 10.1016/j.indcrop.2016.03.013
|
[28] |
GOMEZ H C, SERPA A, VELASQUEZ-COCK J, et al. Vegetable nanocellulose in food science: A review[J]. Food Hydrocolloids,2016,57:178−186. doi: 10.1016/j.foodhyd.2016.01.023
|
[29] |
WANG W, DU G, LI C, et al. Preparation of cellulose nanocrystals from asparagus(Asparagus officinalis L.) and their applications to palm oil/water pickering emulsion[J]. Carbohydrate Polymers,2016,151:1−8. doi: 10.1016/j.carbpol.2016.05.052
|
[30] |
LIU L, KERR W L, KONG F, et al. Influence of nano-fibrillated cellulose(NFC) on starch digestion and glucose absorption[J]. Carbohydrate Polymers,2018,196:146−153. doi: 10.1016/j.carbpol.2018.04.116
|
[31] |
BENINI K C, VOORWALD H J, CIOFFI M O, et al. Preparation of nanocellulose from imperata brasiliensis grass using taguchi method[J]. Carbohydrate Polymers,2018,192:337−346. doi: 10.1016/j.carbpol.2018.03.055
|
[32] |
DITZEL F I, PRESTES E, CARVALHO B M, et al. Nanocrystalline cellulose extracted from pine wood and corncob[J]. Carbohydrate Polymers,2017,157:1577−1585. doi: 10.1016/j.carbpol.2016.11.036
|
[33] |
LIU Z H, LI X P, XIE W, et al. Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste[J]. Carbohydrate Polymers,2017,173:353−359. doi: 10.1016/j.carbpol.2017.05.079
|
[34] |
SHANG Z, AN X, SETA F T, et al. Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals[J]. Carbohydrate Polymers,2019,222:115037. doi: 10.1016/j.carbpol.2019.115037
|
[35] |
LIU Y, WANG H, YU G, et al. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid[J]. Carbohydrate Polymers,2014,110(1):415−422.
|
[36] |
HAMID S B A, ZAIN S K, DAS R, et al. Synergic effect of acid and sonication for rapid synthesis of crystalline nanocellulose[J]. Carbohydrate Polymers,2016,138:349−355. doi: 10.1016/j.carbpol.2015.10.023
|
[37] |
DU H, LIU C, ZHANG Y, et al. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization[J]. Industrial Crops and Products,2016,94:736−745. doi: 10.1016/j.indcrop.2016.09.059
|
[38] |
TURBAK A F, SNYDER F W, SANDBERG K R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential[J]. J Appl Polym Sci: Appl Polym Symp (United States),1983:37.
|
[39] |
LI J H, WEI X Y, WANG Q H, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers,2012,90(4):1609−1613. doi: 10.1016/j.carbpol.2012.07.038
|
[40] |
黄丽婕, 张晓晓, 徐铭梓, 等. 木薯渣纳米纤维素的制备与表征[J]. 包装工程,2019,40(15):16−23. [HUANG Lijie, ZHANG Xiaoxiao, XU Mingzi, et al. Preparation and characterization of cassava residue nano cellulose[J]. Packaging Engineering,2019,40(15):16−23.
|
[41] |
MALUCELLI L C, MATOS M, JORD O C, et al. Grinding severity influences the viscosity of cellulose nanofiber(CNF) suspensions and mechanical properties of nanopaper[J]. Cellulose,2018,25(11):6581−6589. doi: 10.1007/s10570-018-2031-9
|
[42] |
IWAMOTO S, NAKAGAITO A N, YANO H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Applied Physics A,2005,81(6):1109−1112. doi: 10.1007/s00339-005-3316-z
|
[43] |
NAIR S S, ZHU J Y, DENG Y, et al. Characterization of cellulose nanofibrillation by micro grinding[J]. Journal of Nanoparticle Research,2014,16(4):2349. doi: 10.1007/s11051-014-2349-7
|
[44] |
SHAMSKAR K R, HEIDARI H, RASHIDI A. Study on nanocellulose properties processed using different methods and their aerogels[J]. Journal of Polymers and the Environment,2019,27(7):1418−1428. doi: 10.1007/s10924-019-01438-7
|
[45] |
REZANEZHAD S, NAZANEZHAD N, ASADPUR G. Isolation of nanocellulose from rice waste via ultrasonication[J]. Lignocellulose,2013,2(1):282−291.
|
[46] |
卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报,2013,31(15):17−22. [LU Yun, SUN Qingfeng, LI Jian. Preparation and characterization of nano fibrillated cellulose by high frequency ultrasound[J]. Science and Technology Herald,2013,31(15):17−22. doi: 10.3981/j.issn.1000-7857.2013.15.001
|
[47] |
PAN M Z, ZHOU X Y, CHEN M Z. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization[J]. Bioresources,2013,8(1):933−943.
|
[48] |
LI W, WANG R, LIU S, et al. Nanocrystalline cellulose prepared from softwood kraftpulp via ultrasonic-assisted acid hydrolysis[J]. Bioresources,2011,6(4):4271−4281.
|
[49] |
CUI S, ZHANG S, GE S, et al. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis[J]. Industrial Crops and Products,2016,83:346−352. doi: 10.1016/j.indcrop.2016.01.019
|
[50] |
PHANTHONG P, GUA G, MA Y, et al. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,60:617−622. doi: 10.1016/j.jtice.2015.11.001
|
[51] |
PÄÄKKÖ M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules,2007,8(6):1934−1941. doi: 10.1021/bm061215p
|
[52] |
AN X, WEN Y, CHENG D, et al. Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis[J]. Cellulose,2016,23(4):2409−2420. doi: 10.1007/s10570-016-0964-4
|
[53] |
向亚美, 王文涛, 董海洲, 等. 酶解辅助高压均质制备纳米纤维素及其性质表征[J]. 食品工业科技,2017,38(10):76−80. [XIANG Yamei, WANG Wentao, DONG Haizhou, et al. Preparation and characterization of nano cellulose by enzymatic hydrolysis assisted high pressure homogenization[J]. Science and Technology of Food Industry,2017,38(10):76−80.
|
[54] |
ISOGAI A, BERGSTROM L. Preparation of cellulose nanofibers using green and sustainable chemistry[J]. Green and Sustainable Chemistry,2018,12:15−21. doi: 10.1016/j.cogsc.2018.04.008
|
[55] |
FARADILLA R H F, LEE G, ARNS J Y, et al. Characteristics of a free-standing film from banana pseudostem nanocellulose generated from tempo-mediated oxidation[J]. Carbohydrate Polymers,2017,174:1156−1163. doi: 10.1016/j.carbpol.2017.07.025
|
[56] |
ZHOU Y X, SAITO T, BERGSTROM L, et al. Acid-free preparation of cellulose nanocrystals by tempo oxidation and subsequent cavitation[J]. Biomacromolecules,2018,19(2):633−639. doi: 10.1021/acs.biomac.7b01730
|
[57] |
周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展,2014,26(10):1752−1762. [ZHOU Sukun, MAO Jianzhen, XU Feng. Preparation and application of microfibril cellulose[J]. Chemical progress,2014,26(10):1752−1762.
|
[58] |
LIIMATAINEN H, VISANKO M, SIRVIÖ J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules,2012,13(5):1592−1597. doi: 10.1021/bm300319m
|
[59] |
SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry,2015,17(6):3401−3406. doi: 10.1039/C5GC00398A
|
[60] |
HUANG P, WU M, KUGA S, et al. One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent[J]. Chemsuschem,2012,5(12):2319−2322. doi: 10.1002/cssc.201200492
|
[61] |
杜海顺, 刘超, 张苗苗, 等. 纳米纤维素的制备及产业化[J]. 化学进展,2018,30(4):448−462. [DU Haishun, LIU Chao, ZHANG Miaomiao, et al. Preparation and industrialization of nano cellulose[J]. Chemical progress,2018,30(4):448−462.
|
[62] |
DUFRESNE A. Nanocellulose: A new ageless bionanomaterial[J]. Materials Today,2013,16(6):220−227. doi: 10.1016/j.mattod.2013.06.004
|
[63] |
NAGALAKSHAIAH M, KISSI N E, MORTHA G, et al. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex[J]. Carbohydrate Polymers,2016,136(136):945−954.
|
[64] |
REDDY J P, RHIM J. Isolation and characterization of cellulose nanocrystals from garlic skin[J]. Materials Letters,2014,129:20−23. doi: 10.1016/j.matlet.2014.05.019
|
[65] |
CHEN W, ABE K, UEYANI K, et al. Individual cotton cellulose nanofibers: Pretreatment and fibrillation technique[J]. Cellulose,2014,21(3):1517−1528. doi: 10.1007/s10570-014-0172-z
|
[66] |
ABOU-ZEID R E, HASSAN E A, FEDLA B, et al. Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites[J]. Journal of Nanomaterials,2015,16(1):172−183.
|
[67] |
MIRHOSSEINI H, TAN C P, HAMID N, et al. Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,315(1):47−56.
|
[68] |
FENG X, MENG X, ZHAO J, et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: Structures and morphological characterization[J]. Cellulose,2015,22(3):1763−1772. doi: 10.1007/s10570-015-0617-z
|
[69] |
JIANG F, HSIEH Y. Chemically and mechanically isolated nanocellulose and their self-assembled structures[J]. Carbohydrate Polymers,2013,95(1):32−40. doi: 10.1016/j.carbpol.2013.02.022
|
[70] |
SUN B, ZHANG M, HOU Q X, et al. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers[J]. Cellulose,2016,23(1):439−450. doi: 10.1007/s10570-015-0803-z
|
[71] |
ZHOU Y M, FU S Y, ZHENG L M, et al. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films[J]. Express Polymer Letters,2012,6(10):794−804. doi: 10.3144/expresspolymlett.2012.85
|
[72] |
唐丽荣, 黄彪, 戴达松, 等. 纳米纤维素晶体的制备及表征[J]. 林业科学,2011,47(9):119−122. [TANG Lirong, HUANG Biao, DAI Dasong, et al. Preparation and characterization of nano cellulose crystals[J]. Forestry Science,2011,47(9):119−122. doi: 10.11707/j.1001-7488.20110920
|
[73] |
GONZÁLEZ A, GASTELU G, BARRERA G N, et al. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products[J]. Food Hydrocolloids,2019,89:758−764. doi: 10.1016/j.foodhyd.2018.11.051
|
[74] |
HEUX L, DINAND E, VIGNON M R, et al. Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR[J]. Carbohydrate Polymers,1999,40(2):115−124. doi: 10.1016/S0144-8617(99)00051-X
|
[75] |
BARBASH V A, YASCHENKO O V, SHNIRUK O M, et al. Preparation and properties of nanocellulose from organosolv straw pulp[J]. Nanoscale Research Letters,2017,12(1):241−241. doi: 10.1186/s11671-017-2001-4
|
[76] |
REDDY J P, RHIM J. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose[J]. Carbohydrate Polymers,2014,110:480−488. doi: 10.1016/j.carbpol.2014.04.056
|
[77] |
BABAEE M, JONOOBI M, HAMZEH Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers[J]. Carbohydrate Polymers,2015,32:1−8.
|
[78] |
CHENG G, ZHOU M, WEI Y, et al. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites[J]. Polymer Composites,2019,40(S1):E365−E372.
|
[79] |
SIRVIÖ J A, KOLEHMAINEN A, LIIMATAINEN H, et al. Biocomposite cellulose-alginate films: Promising packaging materials[J]. Food Chemistry,2014,151:343−351. doi: 10.1016/j.foodchem.2013.11.037
|
[80] |
AULIN C, KARABULUT E, TRAN A, et al. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties[J]. ACS Applied Materials and Interfaces,2013,5(15):7352−7359. doi: 10.1021/am401700n
|
[81] |
胡云峰, 魏增宇, 李飞, 等. 纳米纤维素涂层软包装材料的制备及其隔氧性能评价[J]. 农业工程学报,2018,34(15):298−303. [HU Yunfeng, WEI Zengyu, LI Fei, et al. Preparation and oxygen isolation performance evaluation of nano cellulose coated flexible packaging materials[J]. Journal of Agricultural Engineering,2018,34(15):298−303. doi: 10.11975/j.issn.1002-6819.2018.15.037
|
[82] |
何依谣. 聚乳酸/纳米纤维素可降解食品包装薄膜的研究及其在西兰花保鲜中的应用[J]. 绿色包装,2018(6):71. [HE Yiyao. Study on polylactic acid/nano cellulose degradable food packaging film and its application in broccoli preservation[J]. Green Packaging,2018(6):71.
|
[83] |
SARWAR M S, NIAZI M B, JAHAN Z, et al. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging.[J]. Carbohydrate Polymers,2018,184:453−464. doi: 10.1016/j.carbpol.2017.12.068
|
[84] |
ZHONG T, OPORTO G S, JACZYNSKI J, et al. Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications[J]. Biomed Research International,2015,2015:1−8.
|
[85] |
KALIA S, BOUFI S, CELLI A, et al. Nanofibrillated cellulose: surface modification and potential applications[J]. Colloid and Polymer Science,2014,292(1):5−31. doi: 10.1007/s00396-013-3112-9
|
[86] |
SAELICES C J, CAPRON I. Design of pickering micro and nanoemulsions based on the structural characteristics of nanocelluloses[J]. Biomacromolecules,2018,19(2):460−469. doi: 10.1021/acs.biomac.7b01564
|
[87] |
COSTA A L, GOMES A, TIBOLLA H, et al. Cellulose nanofibers from banana peels as a pickering emulsifier: high-energy emulsification processes[J]. Carbohydrate Polymers,2018,194:122−131. doi: 10.1016/j.carbpol.2018.04.001
|
[88] |
WU J, ZHU W, SHI X, et al. Acid-free preparation and characterization of kelp(Laminaria japonica) nanocelluloses and their application in pickering emulsions.[J]. Carbohydrate Polymers,2020,236:115999. doi: 10.1016/j.carbpol.2020.115999
|
[89] |
NECHYPORCHUK O, BELGACEM M N, PIGNON F, et al. Current progress in rheology of cellulose nanofibril suspensions[J]. Biomacromolecules,2016,17(7):2311−2320. doi: 10.1021/acs.biomac.6b00668
|
[90] |
LI M, WU Q, SONG K, et al. Cellulose nanoparticles: Structure-morphology-rheology relationships[J]. ACS Sustainable Chemistry and Engineering,2015,3(5):821−832. doi: 10.1021/acssuschemeng.5b00144
|
[91] |
QI W, WU J, SHU Y, et al. Microstructure and physiochemical properties of meat sausages based on nanocellulose-stabilized emulsions[J]. International Journal of Biological Macromolecules,2020,152:567−575. doi: 10.1016/j.ijbiomac.2020.02.285
|
[92] |
牛付阁, 韩备竞, 寇梦璇, 等. 纳米纤维素颗粒稳定的Pickering乳液的性能研究[J]. 中国食品学报,2020,20(6):166−172. [NIU Fuge, HAN Beijing, KOU Mengxuan, et al. Properties of Pickering emulsion stabilized by nano cellulose particles[J]. China Journal of food science,2020,20(6):166−172.
|
[93] |
VELASQUEZCOCK J, SERPA A, VELEZ L M, et al. Influence of cellulose nanofibrils on the structural elements of ice cream[J]. Food Hydrocolloids,2019,87:204−213. doi: 10.1016/j.foodhyd.2018.07.035
|
[94] |
GUO Y, ZHANG X, HAO W, et al. Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model.[J]. Carbohydrate Polymers,2018,198:620−630. doi: 10.1016/j.carbpol.2018.06.078
|
[95] |
HEGGSET B, AAEN R, VESLUM T, et al. Cellulose nanofibrils as rheology modifier in mayonnaise–A pilot scale demonstration[J]. Food Hydrocolloids,2020,108:106084. doi: 10.1016/j.foodhyd.2020.106084
|
[96] |
MARCHETTI L, MUZZIO B, CERRUTTI P, et al. Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages: Effect on quality and stability[J]. Food Structure,2017,14:52−59. doi: 10.1016/j.foostr.2017.06.004
|
[97] |
CORRAL M L, CERRUTTI P, VAZQUEZ A, et al. Bacterial nanocellulose as a potential additive for wheat bread[J]. Food Hydrocolloids,2017,67:189−196. doi: 10.1016/j.foodhyd.2016.11.037
|
[98] |
MARCHETTI L, AANRSE S C, CERRUTI P, et al. Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters[J]. Food Hydrocolloids,2020,98:105315. doi: 10.1016/j.foodhyd.2019.105315
|
[99] |
LIU L, KONG F. Influence of nanocellulose on in vitro digestion of whey protein isolate[J]. Carbohydrate Polymers,2019,210:399−411. doi: 10.1016/j.carbpol.2019.01.071
|
[100] |
NSORATINDANA J, GOFF H D, SAQIB N, et al. Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism[J]. Food Hydrocolloids,2019,90:341−352. doi: 10.1016/j.foodhyd.2018.12.031
|
[101] |
MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host and Microbe,2018,23(6):705−715. doi: 10.1016/j.chom.2018.05.012
|
[102] |
NSORATINDANA J, CHEN M, GOFF H D, et al. Functionality and nutritional aspects of microcrystalline cellulose in food[J]. Carbohydrate Polymers,2017,172:159−174. doi: 10.1016/j.carbpol.2017.04.021
|
[103] |
陆红佳. 纳米甘薯渣纤维素降血糖血脂的功效及其分子机理的研究[D]. 重庆: 西南大学, 2015
LU Hongjia. Study on the hypoglycemic and lipid lowering effect of nano sweet potato residue cellulose and its molecular mechanism[D]. Chongqing: Southwest University, 2015.
|
[104] |
LIU L, KONG F. In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption[J]. International Journal of Biological Macromolecules,2019:361−366.
|
[105] |
AZUMA K, OSAKI T, IFUKU S, et al. Suppressive effects of cellulose nanofibers—made from adlay and seaweed—on colon inflammation in an inflammatory bowel-disease model[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(1):65−72. doi: 10.1016/j.bcdf.2013.09.006
|
[106] |
AZUMA K, OSAKI T, IFUKU S, et al. Anti-inflammatory effects of cellulose nanofiber made from pear in inflammatory bowel disease model[J]. Bioactive Carbohydrates and Dietary Fibre,2014,3(1):1−10. doi: 10.1016/j.bcdf.2013.11.001
|