DONG Xiuyu, TANG Shiying, YANG Heqi, et al. Preparation of Nano-cellulose and Its Application in Food Field[J]. Science and Technology of Food Industry, 2021, 42(24): 434−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110291.
Citation: DONG Xiuyu, TANG Shiying, YANG Heqi, et al. Preparation of Nano-cellulose and Its Application in Food Field[J]. Science and Technology of Food Industry, 2021, 42(24): 434−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110291.

Preparation of Nano-cellulose and Its Application in Food Field

More Information
  • Received Date: November 29, 2020
  • Available Online: October 20, 2021
  • Cellulose is the most abundant natural organic polymer on earth. Nanocellulose is generally prepared via acid hydrolysis, mechanical treatment, oxidation treatment and enzymatic degradation from natural cellulose, such as higher plants, algae and microorganisms. The raw materials and preparation technology have significant effect on the microscopic morphology, chemical structure and aggregation structure of the product. The physicochemical property of nanocellulose gives it the unique macro properties and functional characteristics, in addition, it has the advantages of renewable, biodegradable, and high safety. In recent years, research on the application of nanocellulose in food packaging, food additives and functional foods is in the ascendant, and significant progress has been made. The main aim of this paper is to introduce the latest research results related to the preparation process, structural properties and application of nanocellulose in the food field at home and abroad, in order to provide a reference for the research and development of food technology based on nanocellulose.
  • [1]
    POLETTO M, JUNIOR H L, ZATTERA A J. Native cellulose: Structure, characterization and thermal properties[J]. Materials,2014,7(9):6105−6119. doi: 10.3390/ma7096105
    [2]
    CHEN H Z. Biotechnology of lignocellulose[M]. Springer Netherlands, 2014.
    [3]
    MITTAL A, KATAHIRA R, HIMMEL M E, et al. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility[J]. Biotechnology for Biofuels,2011,4(1):41−41. doi: 10.1186/1754-6834-4-41
    [4]
    MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews,2011,40(7):3941−94. doi: 10.1039/c0cs00108b
    [5]
    孙海涛, 邵信儒, 瞿照婷, 等. 玉米秸秆纳米纤维素的制备及表征[J]. 食品科学,2018,39(8):205−211. [SUN Haitao, SHAO Xinru, QU Zhaoting, et al. Preparation and characterization of corn straw nano cellulose[J]. Food Science,2018,39(8):205−211. doi: 10.7506/spkx1002-6630-201808032
    [6]
    JOHAR N, AHMAD I, DUFRESNE A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk[J]. Industrial Crops and Products,2012,37(1):93−99. doi: 10.1016/j.indcrop.2011.12.016
    [7]
    HERMANS P H, WEIDINGER A. X-ray studies on the crystallinity of cellulose[J]. Journal of Polymerence Part A: Polymer Chemistry,2010,4(2):135−144.
    [8]
    OUN A A, RHIM J. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films[J]. Carbohydrate Polymers,2015,134:20−29. doi: 10.1016/j.carbpol.2015.07.053
    [9]
    CHEN Y W, LEE H V, JUAN J C, et al. Production of new cellulose nanomaterial from red algae marine biomass gelidium elegans[J]. Carbohydrate Polymers,2016,151:1210−1219. doi: 10.1016/j.carbpol.2016.06.083
    [10]
    HE Q, WANG Q, ZHOU H, et al. Highly crystalline cellulose from brown seaweed saccharina japonica: Isolation, characterization and microcrystallization[J]. Cellulose,2018,25(10):5523−5533. doi: 10.1007/s10570-018-1966-1
    [11]
    MIHRANYAN A, LLAGOSTERAL A P, KARMHAG R, et al. Moisture sorption by cellulose powders of varying crystallinity[J]. International Journal of Pharmaceutics,2004,269(2):433−442. doi: 10.1016/j.ijpharm.2003.09.030
    [12]
    RUAN C, ZHU Y, ZHOU X, et al. Effect of cellulose crystallinity on bacterial cellulose assembly[J]. Cellulose,2016,23(6):3417−3427. doi: 10.1007/s10570-016-1065-0
    [13]
    FOSTER C E, MARTIN T M, PAULY M, et al. Comprehensive compositional analysis of plant cell walls(lignocellulosic biomass) part II: Carbohydrates[J]. Journal of Visualized Experiments,2010(37):36−41.
    [14]
    PHANTHONG P, REUBROYCHAROEN P, HAO X, et al. Nanocellulose: Extraction and application[J]. Carbon Resources Conversion,2018,1(1):32−43. doi: 10.1016/j.crcon.2018.05.004
    [15]
    LAVOINE N, DELOGES I, DUFRESNE A, et al. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review[J]. Carbohydrate Polymers,2012,90(2):735−764. doi: 10.1016/j.carbpol.2012.05.026
    [16]
    ALEXANDRESCU L, SYVERUD K, GATTI A, et al. Cytotoxicity tests of cellulose nanofibril-based structures[J]. Cellulose,2013,20(4):1765−1775. doi: 10.1007/s10570-013-9948-9
    [17]
    BRAS J, HASSAN M L, BRUZESSE C, et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops and Products,2010,32(3):627−633. doi: 10.1016/j.indcrop.2010.07.018
    [18]
    GEORGE J, SABAPATHI S N. Cellulose nanocrystals: Synthesis, functional properties, and applications[J]. Nanotechnology, Science and Applications,2015,8:45−54.
    [19]
    DAS K, RAY D, BANDYOPADHYAY N R, et al. Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, Nanoindentation, TGA and SEM[J]. Journal of Polymers and the Environment,2010,18(3):355−363. doi: 10.1007/s10924-010-0167-2
    [20]
    KLEMM D, SCHUMAN D, KRAMER F, et al. Nanocellulose materials−different cellulose, different functionality[J]. Macromolecular Symposia,2010,280(1):60−71.
    [21]
    XIANG Z, GAO W, CHEN L, et al. A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp[J]. Cellulose,2016,23(1):493−503. doi: 10.1007/s10570-015-0840-7
    [22]
    MARTINEZSANZ M, LOPEZRUBIO A, LAGARON J M, et al. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers[J]. Carbohydrate Polymers,2011,85(1):228−236. doi: 10.1016/j.carbpol.2011.02.021
    [23]
    BRINCHI L, COTANA F, FORTUNATI E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications[J]. Carbohydrate Polymers,2013,94(1):154−169. doi: 10.1016/j.carbpol.2013.01.033
    [24]
    NECHYPORCHUK O, BELGACEM M N, BRAS J, et al. Production of cellulose nanofibrils: A review of recent advances[J]. Industrial Crops and Products,2016,93:2−25. doi: 10.1016/j.indcrop.2016.02.016
    [25]
    ROSS P, MAYER R, BENZIMAN M. Cellulose biosynthesis and function in bacteria[J]. Microbiological Reviews,1991,55(1):35−58. doi: 10.1128/mr.55.1.35-58.1991
    [26]
    汪丽粉, 李政, 贾士儒, 等. 细菌纤维素性质及应用的研究进展[J]. 微生物学通报,2014,41(8):1675−1683. [WANG Lifen, LI Zheng, JIA Shiru, et al. Research progress on properties and application of bacterial cellulose[J]. Bulletin of Microbiology,2014,41(8):1675−1683.
    [27]
    AZEREDO H M C, ROSA M F, MATTOSO L H C. Nanocellulose in bio-based food packaging applications[J]. Industrial Crops and Products,2017,97:664−671. doi: 10.1016/j.indcrop.2016.03.013
    [28]
    GOMEZ H C, SERPA A, VELASQUEZ-COCK J, et al. Vegetable nanocellulose in food science: A review[J]. Food Hydrocolloids,2016,57:178−186. doi: 10.1016/j.foodhyd.2016.01.023
    [29]
    WANG W, DU G, LI C, et al. Preparation of cellulose nanocrystals from asparagus(Asparagus officinalis L.) and their applications to palm oil/water pickering emulsion[J]. Carbohydrate Polymers,2016,151:1−8. doi: 10.1016/j.carbpol.2016.05.052
    [30]
    LIU L, KERR W L, KONG F, et al. Influence of nano-fibrillated cellulose(NFC) on starch digestion and glucose absorption[J]. Carbohydrate Polymers,2018,196:146−153. doi: 10.1016/j.carbpol.2018.04.116
    [31]
    BENINI K C, VOORWALD H J, CIOFFI M O, et al. Preparation of nanocellulose from imperata brasiliensis grass using taguchi method[J]. Carbohydrate Polymers,2018,192:337−346. doi: 10.1016/j.carbpol.2018.03.055
    [32]
    DITZEL F I, PRESTES E, CARVALHO B M, et al. Nanocrystalline cellulose extracted from pine wood and corncob[J]. Carbohydrate Polymers,2017,157:1577−1585. doi: 10.1016/j.carbpol.2016.11.036
    [33]
    LIU Z H, LI X P, XIE W, et al. Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste[J]. Carbohydrate Polymers,2017,173:353−359. doi: 10.1016/j.carbpol.2017.05.079
    [34]
    SHANG Z, AN X, SETA F T, et al. Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals[J]. Carbohydrate Polymers,2019,222:115037. doi: 10.1016/j.carbpol.2019.115037
    [35]
    LIU Y, WANG H, YU G, et al. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid[J]. Carbohydrate Polymers,2014,110(1):415−422.
    [36]
    HAMID S B A, ZAIN S K, DAS R, et al. Synergic effect of acid and sonication for rapid synthesis of crystalline nanocellulose[J]. Carbohydrate Polymers,2016,138:349−355. doi: 10.1016/j.carbpol.2015.10.023
    [37]
    DU H, LIU C, ZHANG Y, et al. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization[J]. Industrial Crops and Products,2016,94:736−745. doi: 10.1016/j.indcrop.2016.09.059
    [38]
    TURBAK A F, SNYDER F W, SANDBERG K R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential[J]. J Appl Polym Sci: Appl Polym Symp (United States),1983:37.
    [39]
    LI J H, WEI X Y, WANG Q H, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers,2012,90(4):1609−1613. doi: 10.1016/j.carbpol.2012.07.038
    [40]
    黄丽婕, 张晓晓, 徐铭梓, 等. 木薯渣纳米纤维素的制备与表征[J]. 包装工程,2019,40(15):16−23. [HUANG Lijie, ZHANG Xiaoxiao, XU Mingzi, et al. Preparation and characterization of cassava residue nano cellulose[J]. Packaging Engineering,2019,40(15):16−23.
    [41]
    MALUCELLI L C, MATOS M, JORD O C, et al. Grinding severity influences the viscosity of cellulose nanofiber(CNF) suspensions and mechanical properties of nanopaper[J]. Cellulose,2018,25(11):6581−6589. doi: 10.1007/s10570-018-2031-9
    [42]
    IWAMOTO S, NAKAGAITO A N, YANO H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Applied Physics A,2005,81(6):1109−1112. doi: 10.1007/s00339-005-3316-z
    [43]
    NAIR S S, ZHU J Y, DENG Y, et al. Characterization of cellulose nanofibrillation by micro grinding[J]. Journal of Nanoparticle Research,2014,16(4):2349. doi: 10.1007/s11051-014-2349-7
    [44]
    SHAMSKAR K R, HEIDARI H, RASHIDI A. Study on nanocellulose properties processed using different methods and their aerogels[J]. Journal of Polymers and the Environment,2019,27(7):1418−1428. doi: 10.1007/s10924-019-01438-7
    [45]
    REZANEZHAD S, NAZANEZHAD N, ASADPUR G. Isolation of nanocellulose from rice waste via ultrasonication[J]. Lignocellulose,2013,2(1):282−291.
    [46]
    卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报,2013,31(15):17−22. [LU Yun, SUN Qingfeng, LI Jian. Preparation and characterization of nano fibrillated cellulose by high frequency ultrasound[J]. Science and Technology Herald,2013,31(15):17−22. doi: 10.3981/j.issn.1000-7857.2013.15.001
    [47]
    PAN M Z, ZHOU X Y, CHEN M Z. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization[J]. Bioresources,2013,8(1):933−943.
    [48]
    LI W, WANG R, LIU S, et al. Nanocrystalline cellulose prepared from softwood kraftpulp via ultrasonic-assisted acid hydrolysis[J]. Bioresources,2011,6(4):4271−4281.
    [49]
    CUI S, ZHANG S, GE S, et al. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis[J]. Industrial Crops and Products,2016,83:346−352. doi: 10.1016/j.indcrop.2016.01.019
    [50]
    PHANTHONG P, GUA G, MA Y, et al. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,60:617−622. doi: 10.1016/j.jtice.2015.11.001
    [51]
    PÄÄKKÖ M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules,2007,8(6):1934−1941. doi: 10.1021/bm061215p
    [52]
    AN X, WEN Y, CHENG D, et al. Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis[J]. Cellulose,2016,23(4):2409−2420. doi: 10.1007/s10570-016-0964-4
    [53]
    向亚美, 王文涛, 董海洲, 等. 酶解辅助高压均质制备纳米纤维素及其性质表征[J]. 食品工业科技,2017,38(10):76−80. [XIANG Yamei, WANG Wentao, DONG Haizhou, et al. Preparation and characterization of nano cellulose by enzymatic hydrolysis assisted high pressure homogenization[J]. Science and Technology of Food Industry,2017,38(10):76−80.
    [54]
    ISOGAI A, BERGSTROM L. Preparation of cellulose nanofibers using green and sustainable chemistry[J]. Green and Sustainable Chemistry,2018,12:15−21. doi: 10.1016/j.cogsc.2018.04.008
    [55]
    FARADILLA R H F, LEE G, ARNS J Y, et al. Characteristics of a free-standing film from banana pseudostem nanocellulose generated from tempo-mediated oxidation[J]. Carbohydrate Polymers,2017,174:1156−1163. doi: 10.1016/j.carbpol.2017.07.025
    [56]
    ZHOU Y X, SAITO T, BERGSTROM L, et al. Acid-free preparation of cellulose nanocrystals by tempo oxidation and subsequent cavitation[J]. Biomacromolecules,2018,19(2):633−639. doi: 10.1021/acs.biomac.7b01730
    [57]
    周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展,2014,26(10):1752−1762. [ZHOU Sukun, MAO Jianzhen, XU Feng. Preparation and application of microfibril cellulose[J]. Chemical progress,2014,26(10):1752−1762.
    [58]
    LIIMATAINEN H, VISANKO M, SIRVIÖ J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules,2012,13(5):1592−1597. doi: 10.1021/bm300319m
    [59]
    SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry,2015,17(6):3401−3406. doi: 10.1039/C5GC00398A
    [60]
    HUANG P, WU M, KUGA S, et al. One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent[J]. Chemsuschem,2012,5(12):2319−2322. doi: 10.1002/cssc.201200492
    [61]
    杜海顺, 刘超, 张苗苗, 等. 纳米纤维素的制备及产业化[J]. 化学进展,2018,30(4):448−462. [DU Haishun, LIU Chao, ZHANG Miaomiao, et al. Preparation and industrialization of nano cellulose[J]. Chemical progress,2018,30(4):448−462.
    [62]
    DUFRESNE A. Nanocellulose: A new ageless bionanomaterial[J]. Materials Today,2013,16(6):220−227. doi: 10.1016/j.mattod.2013.06.004
    [63]
    NAGALAKSHAIAH M, KISSI N E, MORTHA G, et al. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex[J]. Carbohydrate Polymers,2016,136(136):945−954.
    [64]
    REDDY J P, RHIM J. Isolation and characterization of cellulose nanocrystals from garlic skin[J]. Materials Letters,2014,129:20−23. doi: 10.1016/j.matlet.2014.05.019
    [65]
    CHEN W, ABE K, UEYANI K, et al. Individual cotton cellulose nanofibers: Pretreatment and fibrillation technique[J]. Cellulose,2014,21(3):1517−1528. doi: 10.1007/s10570-014-0172-z
    [66]
    ABOU-ZEID R E, HASSAN E A, FEDLA B, et al. Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites[J]. Journal of Nanomaterials,2015,16(1):172−183.
    [67]
    MIRHOSSEINI H, TAN C P, HAMID N, et al. Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,315(1):47−56.
    [68]
    FENG X, MENG X, ZHAO J, et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: Structures and morphological characterization[J]. Cellulose,2015,22(3):1763−1772. doi: 10.1007/s10570-015-0617-z
    [69]
    JIANG F, HSIEH Y. Chemically and mechanically isolated nanocellulose and their self-assembled structures[J]. Carbohydrate Polymers,2013,95(1):32−40. doi: 10.1016/j.carbpol.2013.02.022
    [70]
    SUN B, ZHANG M, HOU Q X, et al. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers[J]. Cellulose,2016,23(1):439−450. doi: 10.1007/s10570-015-0803-z
    [71]
    ZHOU Y M, FU S Y, ZHENG L M, et al. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films[J]. Express Polymer Letters,2012,6(10):794−804. doi: 10.3144/expresspolymlett.2012.85
    [72]
    唐丽荣, 黄彪, 戴达松, 等. 纳米纤维素晶体的制备及表征[J]. 林业科学,2011,47(9):119−122. [TANG Lirong, HUANG Biao, DAI Dasong, et al. Preparation and characterization of nano cellulose crystals[J]. Forestry Science,2011,47(9):119−122. doi: 10.11707/j.1001-7488.20110920
    [73]
    GONZÁLEZ A, GASTELU G, BARRERA G N, et al. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products[J]. Food Hydrocolloids,2019,89:758−764. doi: 10.1016/j.foodhyd.2018.11.051
    [74]
    HEUX L, DINAND E, VIGNON M R, et al. Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR[J]. Carbohydrate Polymers,1999,40(2):115−124. doi: 10.1016/S0144-8617(99)00051-X
    [75]
    BARBASH V A, YASCHENKO O V, SHNIRUK O M, et al. Preparation and properties of nanocellulose from organosolv straw pulp[J]. Nanoscale Research Letters,2017,12(1):241−241. doi: 10.1186/s11671-017-2001-4
    [76]
    REDDY J P, RHIM J. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose[J]. Carbohydrate Polymers,2014,110:480−488. doi: 10.1016/j.carbpol.2014.04.056
    [77]
    BABAEE M, JONOOBI M, HAMZEH Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers[J]. Carbohydrate Polymers,2015,32:1−8.
    [78]
    CHENG G, ZHOU M, WEI Y, et al. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites[J]. Polymer Composites,2019,40(S1):E365−E372.
    [79]
    SIRVIÖ J A, KOLEHMAINEN A, LIIMATAINEN H, et al. Biocomposite cellulose-alginate films: Promising packaging materials[J]. Food Chemistry,2014,151:343−351. doi: 10.1016/j.foodchem.2013.11.037
    [80]
    AULIN C, KARABULUT E, TRAN A, et al. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties[J]. ACS Applied Materials and Interfaces,2013,5(15):7352−7359. doi: 10.1021/am401700n
    [81]
    胡云峰, 魏增宇, 李飞, 等. 纳米纤维素涂层软包装材料的制备及其隔氧性能评价[J]. 农业工程学报,2018,34(15):298−303. [HU Yunfeng, WEI Zengyu, LI Fei, et al. Preparation and oxygen isolation performance evaluation of nano cellulose coated flexible packaging materials[J]. Journal of Agricultural Engineering,2018,34(15):298−303. doi: 10.11975/j.issn.1002-6819.2018.15.037
    [82]
    何依谣. 聚乳酸/纳米纤维素可降解食品包装薄膜的研究及其在西兰花保鲜中的应用[J]. 绿色包装,2018(6):71. [HE Yiyao. Study on polylactic acid/nano cellulose degradable food packaging film and its application in broccoli preservation[J]. Green Packaging,2018(6):71.
    [83]
    SARWAR M S, NIAZI M B, JAHAN Z, et al. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging.[J]. Carbohydrate Polymers,2018,184:453−464. doi: 10.1016/j.carbpol.2017.12.068
    [84]
    ZHONG T, OPORTO G S, JACZYNSKI J, et al. Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications[J]. Biomed Research International,2015,2015:1−8.
    [85]
    KALIA S, BOUFI S, CELLI A, et al. Nanofibrillated cellulose: surface modification and potential applications[J]. Colloid and Polymer Science,2014,292(1):5−31. doi: 10.1007/s00396-013-3112-9
    [86]
    SAELICES C J, CAPRON I. Design of pickering micro and nanoemulsions based on the structural characteristics of nanocelluloses[J]. Biomacromolecules,2018,19(2):460−469. doi: 10.1021/acs.biomac.7b01564
    [87]
    COSTA A L, GOMES A, TIBOLLA H, et al. Cellulose nanofibers from banana peels as a pickering emulsifier: high-energy emulsification processes[J]. Carbohydrate Polymers,2018,194:122−131. doi: 10.1016/j.carbpol.2018.04.001
    [88]
    WU J, ZHU W, SHI X, et al. Acid-free preparation and characterization of kelp(Laminaria japonica) nanocelluloses and their application in pickering emulsions.[J]. Carbohydrate Polymers,2020,236:115999. doi: 10.1016/j.carbpol.2020.115999
    [89]
    NECHYPORCHUK O, BELGACEM M N, PIGNON F, et al. Current progress in rheology of cellulose nanofibril suspensions[J]. Biomacromolecules,2016,17(7):2311−2320. doi: 10.1021/acs.biomac.6b00668
    [90]
    LI M, WU Q, SONG K, et al. Cellulose nanoparticles: Structure-morphology-rheology relationships[J]. ACS Sustainable Chemistry and Engineering,2015,3(5):821−832. doi: 10.1021/acssuschemeng.5b00144
    [91]
    QI W, WU J, SHU Y, et al. Microstructure and physiochemical properties of meat sausages based on nanocellulose-stabilized emulsions[J]. International Journal of Biological Macromolecules,2020,152:567−575. doi: 10.1016/j.ijbiomac.2020.02.285
    [92]
    牛付阁, 韩备竞, 寇梦璇, 等. 纳米纤维素颗粒稳定的Pickering乳液的性能研究[J]. 中国食品学报,2020,20(6):166−172. [NIU Fuge, HAN Beijing, KOU Mengxuan, et al. Properties of Pickering emulsion stabilized by nano cellulose particles[J]. China Journal of food science,2020,20(6):166−172.
    [93]
    VELASQUEZCOCK J, SERPA A, VELEZ L M, et al. Influence of cellulose nanofibrils on the structural elements of ice cream[J]. Food Hydrocolloids,2019,87:204−213. doi: 10.1016/j.foodhyd.2018.07.035
    [94]
    GUO Y, ZHANG X, HAO W, et al. Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model.[J]. Carbohydrate Polymers,2018,198:620−630. doi: 10.1016/j.carbpol.2018.06.078
    [95]
    HEGGSET B, AAEN R, VESLUM T, et al. Cellulose nanofibrils as rheology modifier in mayonnaise–A pilot scale demonstration[J]. Food Hydrocolloids,2020,108:106084. doi: 10.1016/j.foodhyd.2020.106084
    [96]
    MARCHETTI L, MUZZIO B, CERRUTTI P, et al. Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages: Effect on quality and stability[J]. Food Structure,2017,14:52−59. doi: 10.1016/j.foostr.2017.06.004
    [97]
    CORRAL M L, CERRUTTI P, VAZQUEZ A, et al. Bacterial nanocellulose as a potential additive for wheat bread[J]. Food Hydrocolloids,2017,67:189−196. doi: 10.1016/j.foodhyd.2016.11.037
    [98]
    MARCHETTI L, AANRSE S C, CERRUTI P, et al. Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters[J]. Food Hydrocolloids,2020,98:105315. doi: 10.1016/j.foodhyd.2019.105315
    [99]
    LIU L, KONG F. Influence of nanocellulose on in vitro digestion of whey protein isolate[J]. Carbohydrate Polymers,2019,210:399−411. doi: 10.1016/j.carbpol.2019.01.071
    [100]
    NSORATINDANA J, GOFF H D, SAQIB N, et al. Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism[J]. Food Hydrocolloids,2019,90:341−352. doi: 10.1016/j.foodhyd.2018.12.031
    [101]
    MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host and Microbe,2018,23(6):705−715. doi: 10.1016/j.chom.2018.05.012
    [102]
    NSORATINDANA J, CHEN M, GOFF H D, et al. Functionality and nutritional aspects of microcrystalline cellulose in food[J]. Carbohydrate Polymers,2017,172:159−174. doi: 10.1016/j.carbpol.2017.04.021
    [103]
    陆红佳. 纳米甘薯渣纤维素降血糖血脂的功效及其分子机理的研究[D]. 重庆: 西南大学, 2015

    LU Hongjia. Study on the hypoglycemic and lipid lowering effect of nano sweet potato residue cellulose and its molecular mechanism[D]. Chongqing: Southwest University, 2015.
    [104]
    LIU L, KONG F. In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption[J]. International Journal of Biological Macromolecules,2019:361−366.
    [105]
    AZUMA K, OSAKI T, IFUKU S, et al. Suppressive effects of cellulose nanofibers—made from adlay and seaweed—on colon inflammation in an inflammatory bowel-disease model[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(1):65−72. doi: 10.1016/j.bcdf.2013.09.006
    [106]
    AZUMA K, OSAKI T, IFUKU S, et al. Anti-inflammatory effects of cellulose nanofiber made from pear in inflammatory bowel disease model[J]. Bioactive Carbohydrates and Dietary Fibre,2014,3(1):1−10. doi: 10.1016/j.bcdf.2013.11.001
  • Cited by

    Periodical cited type(5)

    1. 孙春华. 基于示范城市创建的食品经营环节风险点分析. 现代食品. 2024(05): 224-228 .
    2. 李永新,陈新明,李德芳. 社会治理视域下学校食品安全监管策略研究. 中国食品学报. 2024(10): 485-494 .
    3. 满正印,陈晓燕,郭燕,陈祖满. 基于平衡计分卡的国家食品安全示范城市评价模型构建研究. 食品与发酵科技. 2023(03): 91-95 .
    4. 汪雨龙,陈志良. 浙江省食品安全风险社会共治示范引领综合评价研究. 中国食品卫生杂志. 2023(11): 1623-1630 .
    5. 谢帆,陈江颖,田富俊. 价值感知对农村居民参与食品安全治理意愿的影响-基于福建省427份问卷的分析. 台湾农业探索. 2023(06): 15-21 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (640) PDF downloads (71) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return