Citation: | CAI Yahui, WANG Qing, WANG Wenyu, et al. Optimization of Fermentation Medium for γ-Polyglutamic Acid Production by Bacillus siamese LW-1 [J]. Science and Technology of Food Industry, 2021, 42(16): 163−170. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110269. |
[1] |
Ho G, Ho T, Hsieh K, et al. γ-Polyglutamic acid produced by Bacillus subtilis(natto)_structural characteristics, chemical properties and biological functionalities[J]. Journal of the Chinese Chemical Society,2006(53):1363−1384.
|
[2] |
Luo Z, Guo Y, Liu J, et al. Microbial synthesis of poly-γ-glutamic acid: Current progress, challenges, and future perspectives[J]. Biotechnology for Biofuels,2016,9(1):134. doi: 10.1186/s13068-016-0537-7
|
[3] |
Qiu Y, Zhu Y, Zhan Y, et al. Systematic unravelling of the inulin hydrolase from Bacillusamyloliquefaciens for efficient conversion of inulin to poly-(γ-glutamic acid)[J]. Biotechnology for Biofuels,2019,12(1):145−158. doi: 10.1186/s13068-019-1485-9
|
[4] |
Lee N, Go T, Lee S, et al. In vitro evaluation of new functional properties of poly-γ-glutamic acid produced by Bacillus subtilis D7[J]. Saudi Journal of Biological Sciences,2014,21(2):153−158. doi: 10.1016/j.sjbs.2013.09.004
|
[5] |
刘芳, 皇高峰, 王青, 等. γ-聚谷氨酸对面条面团流变学特性和微观结构的影响[J]. 食品与发酵工业,2020,46(14):85−90.
|
[6] |
Luo S G, Chien C C, Sheu Y T, et al. Enhanced bioremediation of trichloroethene-contaminated groundwater using modified γ-PGA for continuous substrate supplement and pH control: Batch and pilot-scale studies[J]. Journal of Cleaner Production, 2021, 278: 123736. [2021-03-12]. https://doi.org/10.1016/j.jclepro.2020.123736.
|
[7] |
黄天悦, 高鹏, 王进, 等. γ-聚谷氨酸的发酵优化及其对辣椒生长的影响[J]. 武汉工程大学学报,2020,42(2):143−152.
|
[8] |
Azarhava H, Bajestani M I, Jafari A, et al. Production and physicochemical characterization of bacterial poly gamma-(glutamic acid) to investigate its performance on enhanced oil recovery[J]. International Journal of Biological Macromolecules,2020,147:1204−1212. doi: 10.1016/j.ijbiomac.2019.10.090
|
[9] |
张雷, 张蕾, 王玲莉, 等. γ-聚谷氨酸生产菌株的鉴定及发酵培养基优化[J]. 食品工业科技,2020,41(20):64−71.
|
[10] |
李海红, 赵琪琪, 许力山, 等. 一株高产γ-聚谷氨酸菌株的筛选、鉴定及其发酵培养基优化[J]. 应用与环境生物学报,2020,6(26):1−14.
|
[11] |
Zhu R Y, Ma X Z, Liu J. Optimization of γ-polyglutamic acid synthesis using response surface methodology of a newly isolated glutamate dependentBacillus velezensis Z3[J]. International Microbiology,2018,3(21):143−152.
|
[12] |
王风青, 毕长富, 王川, 王凝, 龚利娟, 周丽洪, 王竹青. 黄水基质微生物发酵合成γ-聚谷氨酸培养基及条件优化[J/OL]. 食品工业科技: 1−17[2021-03-12]. https://doi.org/0.13386/j.issn1002-0306.2020080014.
|
[13] |
Zhang W, He Y, Gao W, et al. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production inB. amyloliquefaciens LL3[J]. Journal of Industrial Microbiology & Biotechnology,2015,42(2):297−305.
|
[14] |
Wang D, Kim H, Lee S, et al. Simultaneous production of poly-γ-glutamic acid and 2, 3-butanediol by a newly isolated Bacillus subtilis CS13[J]. Applied Microbiology and Biotechnology, 2020, 104(16): 7005−7021. [2021-03-12]. https://doi.org/10.1007/s00253-020-10755-0.
|
[15] |
Kongklom N, Luo H, Shi Z, et al. Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies[J]. Biochemical Engineering Journal,2015,100:67−75. doi: 10.1016/j.bej.2015.04.007
|
[16] |
Zhang C, Wu D, Ren H. Economical production of agricultural γ-polyglutamic acid using industrial wastes by Bacillus subtilis[J]. Biochemical Engineering Journal,2019,146:117−123. doi: 10.1016/j.bej.2019.03.013
|
[17] |
Zhang H, Zhu J, Zhu X, et al. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10[J]. Bioresource Technology,2012,116:241−246. doi: 10.1016/j.biortech.2011.11.085
|
[18] |
Peng Y, Jiang B, Zhang T, et al. High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus[J]. Process Biochemistry,2015,50(3):329−335. doi: 10.1016/j.procbio.2014.12.024
|
[19] |
Wang D, Kim H, Lee S, et al. High-level production of poly-γ-glutamic acid from untreated molasses by Bacillus siamensis IR10[J]. Microbial Cell Factories,2020,19(1):101. doi: 10.1186/s12934-020-01361-w
|
[20] |
Wang D, Hwang J, Kim D, et al. A newly isolated Bacillus siamensis SB1001 for mass production of poly-γ-glutamic acid[J]. Process Biochemistry,2020,92:164−173. doi: 10.1016/j.procbio.2019.11.034
|
[21] |
刘培洋, 刘芳, 蔡亚慧, 等. 产γ-聚谷氨酸解淀粉芽孢杆菌LDJ11培养基组分优化研究[J]. 轻工学报,2018,33(3):30−38. doi: 10.3969/j.issn.2096-1553.2018.03.004
|
[22] |
盛洁, 孟凡强, 吕凤霞, 等. 解淀粉芽孢杆菌fmbj37产γ-聚谷氨酸发酵培养基的优化[J]. 食品工业科技,2019,40(20):160−166.
|
[23] |
武国慧, 张蕾, 高德才, 等. 枯草芽孢杆菌发酵生产聚-γ-谷氨酸的条件优化[J]. 食品研究与开发,2017,38(11):165−170. doi: 10.3969/j.issn.1005-6521.2017.11.037
|
[24] |
李晨霞, 梁晶, 孙丽慧. 一株产γ-PGA的芽孢杆菌的分离鉴定及发酵条件的优化[J]. 食品工业科技,2018(19):101−108.
|
[25] |
Ju W, Song Y, Jung W, et al. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis[J]. Biotechnology Letters,2014,36(11):2319−2324. doi: 10.1007/s10529-014-1613-3
|
[26] |
王振强, 贾俊伟, 王浩, 等. 纳豆芽孢杆菌TK-2产γ-聚谷氨酸发酵工艺优化[J]. 中国酿造,2019,38(11):95−101. doi: 10.11882/j.issn.0254-5071.2019.11.020
|
[27] |
张浩, 杜万根, 舒旭晨, 等. 解淀粉芽孢杆菌PI142产γ-聚谷氨酸发酵条件优化[J]. 淮南师范学院学报,2018,20(2):142−148. doi: 10.3969/j.issn.1009-9530.2018.02.031
|
[28] |
房俊楠, 雷娟, 许力山, 等. 微生物发酵生产γ-聚谷氨酸研究进展[J]. 应用与环境生物学报,2018,24(5):1041−1049.
|
[29] |
Feng J, Shi Q, Zhou G, et al. Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a[J]. Process Biochemistry,2017,56:30−36. doi: 10.1016/j.procbio.2017.02.017
|
[30] |
Zhang D, Xu Z Q, Xu H. Antifreeze protection of γ-polyglutamic acid on frozen dough and noodles[J]. Biotechnology and Bioprocess Engineering,2011(16):1144−1151.
|
[31] |
Zeng W, Li W, Shu L, et al. Non-sterilized fermentative co-production of poly (γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28[J]. Bioresource Technology,2013,142:697−700. doi: 10.1016/j.biortech.2013.05.020
|
[32] |
鞠蕾, 马霞. γ-聚谷氨酸的提取方法改进[J]. 现代化工,2011,31(S1):267−270.
|