CAI Yahui, WANG Qing, WANG Wenyu, et al. Optimization of Fermentation Medium for γ-Polyglutamic Acid Production by Bacillus siamese LW-1 [J]. Science and Technology of Food Industry, 2021, 42(16): 163−170. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110269.
Citation: CAI Yahui, WANG Qing, WANG Wenyu, et al. Optimization of Fermentation Medium for γ-Polyglutamic Acid Production by Bacillus siamese LW-1 [J]. Science and Technology of Food Industry, 2021, 42(16): 163−170. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110269.

Optimization of Fermentation Medium for γ-Polyglutamic Acid Production by Bacillus siamese LW-1

More Information
  • Received Date: November 29, 2020
  • Available Online: June 16, 2021
  • In order to increase the production of γ-polyglutamic acid (γ-PGA) from Bacillus siamese LW-1, three significant factors affecting yield of γ-PGA from the initial fermentation medium components were screened through the Plackett-Burman(PB) and the steepest climbing experiment based on the single-factor experiment to determine the optimal area of the response surface; the optimal medium components of Bacillus siamese LW-1 were obtained by using a three-factor and three-level Box-Behnken experiment. The optimal medium components for Bacillus siamese LW-1 producing γ-PGA were: sodium glutamate 86.71 g/L, sodium citrate 17.94 g/L, MgSO4·7H2O 2.11 g/L, glycerol 25 g/L, KH2PO4 1.4 g/L, (NH4)2SO4 14 g/L, MnSO4 0.075 g/L, CaCl2 0.1 g/L, FeCl3·6H2O 0.04 g/L. Under this optimum condition, the yield of γ-PGA was 44.78 g/L which was 1.93 times that of before optimization(23.26 g/L ), and it was very close to the maximum value 45.91 g/L predicted by the theory.
  • [1]
    Ho G, Ho T, Hsieh K, et al. γ-Polyglutamic acid produced by Bacillus subtilis(natto)_structural characteristics, chemical properties and biological functionalities[J]. Journal of the Chinese Chemical Society,2006(53):1363−1384.
    [2]
    Luo Z, Guo Y, Liu J, et al. Microbial synthesis of poly-γ-glutamic acid: Current progress, challenges, and future perspectives[J]. Biotechnology for Biofuels,2016,9(1):134. doi: 10.1186/s13068-016-0537-7
    [3]
    Qiu Y, Zhu Y, Zhan Y, et al. Systematic unravelling of the inulin hydrolase from Bacillusamyloliquefaciens for efficient conversion of inulin to poly-(γ-glutamic acid)[J]. Biotechnology for Biofuels,2019,12(1):145−158. doi: 10.1186/s13068-019-1485-9
    [4]
    Lee N, Go T, Lee S, et al. In vitro evaluation of new functional properties of poly-γ-glutamic acid produced by Bacillus subtilis D7[J]. Saudi Journal of Biological Sciences,2014,21(2):153−158. doi: 10.1016/j.sjbs.2013.09.004
    [5]
    刘芳, 皇高峰, 王青, 等. γ-聚谷氨酸对面条面团流变学特性和微观结构的影响[J]. 食品与发酵工业,2020,46(14):85−90.
    [6]
    Luo S G, Chien C C, Sheu Y T, et al. Enhanced bioremediation of trichloroethene-contaminated groundwater using modified γ-PGA for continuous substrate supplement and pH control: Batch and pilot-scale studies[J]. Journal of Cleaner Production, 2021, 278: 123736. [2021-03-12]. https://doi.org/10.1016/j.jclepro.2020.123736.
    [7]
    黄天悦, 高鹏, 王进, 等. γ-聚谷氨酸的发酵优化及其对辣椒生长的影响[J]. 武汉工程大学学报,2020,42(2):143−152.
    [8]
    Azarhava H, Bajestani M I, Jafari A, et al. Production and physicochemical characterization of bacterial poly gamma-(glutamic acid) to investigate its performance on enhanced oil recovery[J]. International Journal of Biological Macromolecules,2020,147:1204−1212. doi: 10.1016/j.ijbiomac.2019.10.090
    [9]
    张雷, 张蕾, 王玲莉, 等. γ-聚谷氨酸生产菌株的鉴定及发酵培养基优化[J]. 食品工业科技,2020,41(20):64−71.
    [10]
    李海红, 赵琪琪, 许力山, 等. 一株高产γ-聚谷氨酸菌株的筛选、鉴定及其发酵培养基优化[J]. 应用与环境生物学报,2020,6(26):1−14.
    [11]
    Zhu R Y, Ma X Z, Liu J. Optimization of γ-polyglutamic acid synthesis using response surface methodology of a newly isolated glutamate dependentBacillus velezensis Z3[J]. International Microbiology,2018,3(21):143−152.
    [12]
    王风青, 毕长富, 王川, 王凝, 龚利娟, 周丽洪, 王竹青. 黄水基质微生物发酵合成γ-聚谷氨酸培养基及条件优化[J/OL]. 食品工业科技: 1−17[2021-03-12]. https://doi.org/0.13386/j.issn1002-0306.2020080014.
    [13]
    Zhang W, He Y, Gao W, et al. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production inB. amyloliquefaciens LL3[J]. Journal of Industrial Microbiology & Biotechnology,2015,42(2):297−305.
    [14]
    Wang D, Kim H, Lee S, et al. Simultaneous production of poly-γ-glutamic acid and 2, 3-butanediol by a newly isolated Bacillus subtilis CS13[J]. Applied Microbiology and Biotechnology, 2020, 104(16): 7005−7021. [2021-03-12]. https://doi.org/10.1007/s00253-020-10755-0.
    [15]
    Kongklom N, Luo H, Shi Z, et al. Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies[J]. Biochemical Engineering Journal,2015,100:67−75. doi: 10.1016/j.bej.2015.04.007
    [16]
    Zhang C, Wu D, Ren H. Economical production of agricultural γ-polyglutamic acid using industrial wastes by Bacillus subtilis[J]. Biochemical Engineering Journal,2019,146:117−123. doi: 10.1016/j.bej.2019.03.013
    [17]
    Zhang H, Zhu J, Zhu X, et al. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10[J]. Bioresource Technology,2012,116:241−246. doi: 10.1016/j.biortech.2011.11.085
    [18]
    Peng Y, Jiang B, Zhang T, et al. High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus[J]. Process Biochemistry,2015,50(3):329−335. doi: 10.1016/j.procbio.2014.12.024
    [19]
    Wang D, Kim H, Lee S, et al. High-level production of poly-γ-glutamic acid from untreated molasses by Bacillus siamensis IR10[J]. Microbial Cell Factories,2020,19(1):101. doi: 10.1186/s12934-020-01361-w
    [20]
    Wang D, Hwang J, Kim D, et al. A newly isolated Bacillus siamensis SB1001 for mass production of poly-γ-glutamic acid[J]. Process Biochemistry,2020,92:164−173. doi: 10.1016/j.procbio.2019.11.034
    [21]
    刘培洋, 刘芳, 蔡亚慧, 等. 产γ-聚谷氨酸解淀粉芽孢杆菌LDJ11培养基组分优化研究[J]. 轻工学报,2018,33(3):30−38. doi: 10.3969/j.issn.2096-1553.2018.03.004
    [22]
    盛洁, 孟凡强, 吕凤霞, 等. 解淀粉芽孢杆菌fmbj37产γ-聚谷氨酸发酵培养基的优化[J]. 食品工业科技,2019,40(20):160−166.
    [23]
    武国慧, 张蕾, 高德才, 等. 枯草芽孢杆菌发酵生产聚-γ-谷氨酸的条件优化[J]. 食品研究与开发,2017,38(11):165−170. doi: 10.3969/j.issn.1005-6521.2017.11.037
    [24]
    李晨霞, 梁晶, 孙丽慧. 一株产γ-PGA的芽孢杆菌的分离鉴定及发酵条件的优化[J]. 食品工业科技,2018(19):101−108.
    [25]
    Ju W, Song Y, Jung W, et al. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis[J]. Biotechnology Letters,2014,36(11):2319−2324. doi: 10.1007/s10529-014-1613-3
    [26]
    王振强, 贾俊伟, 王浩, 等. 纳豆芽孢杆菌TK-2产γ-聚谷氨酸发酵工艺优化[J]. 中国酿造,2019,38(11):95−101. doi: 10.11882/j.issn.0254-5071.2019.11.020
    [27]
    张浩, 杜万根, 舒旭晨, 等. 解淀粉芽孢杆菌PI142产γ-聚谷氨酸发酵条件优化[J]. 淮南师范学院学报,2018,20(2):142−148. doi: 10.3969/j.issn.1009-9530.2018.02.031
    [28]
    房俊楠, 雷娟, 许力山, 等. 微生物发酵生产γ-聚谷氨酸研究进展[J]. 应用与环境生物学报,2018,24(5):1041−1049.
    [29]
    Feng J, Shi Q, Zhou G, et al. Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a[J]. Process Biochemistry,2017,56:30−36. doi: 10.1016/j.procbio.2017.02.017
    [30]
    Zhang D, Xu Z Q, Xu H. Antifreeze protection of γ-polyglutamic acid on frozen dough and noodles[J]. Biotechnology and Bioprocess Engineering,2011(16):1144−1151.
    [31]
    Zeng W, Li W, Shu L, et al. Non-sterilized fermentative co-production of poly (γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28[J]. Bioresource Technology,2013,142:697−700. doi: 10.1016/j.biortech.2013.05.020
    [32]
    鞠蕾, 马霞. γ-聚谷氨酸的提取方法改进[J]. 现代化工,2011,31(S1):267−270.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return