Citation: | MA Jiajia, WANG Keqiang. Research Progress of Optical Nondestructive Testing Technology for Fruit Quality[J]. Science and Technology of Food Industry, 2021, 42(23): 427−437. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110235. |
[1] |
谭俊杰, 杨尚东, 周柳强, 等. 基于中国—东盟水果贸易的广西优质柑橘产业发展策略探析[J]. 南方农业学报,2020,51(2):470−476. [TAN Junjie, YANG Shangdong, ZHOU Liuqiang, et al. High-quality citrus industry development strategies of Guangxi based on China-ASEAN fruit trade[J]. Journal of Southern Agriculture,2020,51(2):470−476.
|
[2] |
翁鸣. 中国农产品进出口现状及其特点[J]. 国际贸易,2013(6):30−35. [WENG Ming. Current situation and characteristics of import and export of agricultural products in China[J]. Intertrade,2013(6):30−35.
|
[3] |
巴勒江·马迪尼也提, 布娲鹣·阿布拉. 中国水果出口贸易的比较优势及影响因素分析[J]. 世界农业,2019(7):57−68. [BALJAN Madeniet, BUAJAN Abela. Analysis of comparative advantages and related factors of Chinese fruit export trade[J]. World Agriculture,2019(7):57−68.
|
[4] |
刘妍, 周新奇, 俞晓峰, 等. 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版),2020,46(1):27−37. [LIU Yan, ZHOU Xinqi, YU Xiaofeng, et al. Research progress of nondestructive testing techniques for fruit and vegetable quality[J]. Journal of Zhejiang University(Agriculture and Life Sciences),2020,46(1):27−37.
|
[5] |
陈兵旗, 吴召恒, 李红业, 等. 机器视觉技术的农业应用研究进展[J]. 科技导报,2018,36(11):54−65. [CHEN Bingqi, WU Zhaoheng, LI Hongye, et al. Research of machine vision technology in agricultural application: Today and the future[J]. Science and Technology Review,2018,36(11):54−65.
|
[6] |
高迎旺, 耿金凤, 饶秀勤. 果蔬采后内部损伤无损检测研究进展[J]. 食品科学,2017,38(15):277−287. [GAO Yingwang, GENG Jinfeng, RAO Xiuqin. Non-invasive bruise detection in postharvest fruits and vegetables: A review[J]. Food Science,2017,38(15):277−287.
|
[7] |
柳琦, 涂郑禹, 陈超, 等. 计算机视觉技术在食品品质检测中的应用[J]. 食品研究与开发,2020,41(16):208−213. [LIU Qi, TU Zhengyu, CHEN Chao, et al. Application of computer vision technology in the food quality inspection[J]. Food Research and Development,2020,41(16):208−213.
|
[8] |
白菲, 孟超英. 水果自动分级技术的现状与发展[J]. 食品科学,2005(S1):145−148. [BAI Fei, MENG Chaoying. Research progress and commercialization of the automatic classification technology[J]. Food Science,2005(S1):145−148.
|
[9] |
汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报,2017,22(12):1640−1663. [TANG Bo, KONG Jianyi, WU Shiqian. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics,2017,22(12):1640−1663.
|
[10] |
YANG Tao. Spherical transform of fruit images for on-line defect extraction of mass objects[J]. Optical Engineering,1996,35(2):344−350.
|
[11] |
NAKANO K. Application of neural networks to the color grading of apples[J]. Computers and Electronics in Agriculture,1997,18(2-3):105−116.
|
[12] |
SOFU M M, ER O, KAYACAN M C, et al. Design of an automatic apple sorting system using machine vision[J]. Computers and Electronics in Agriculture,2016,127:395−405.
|
[13] |
李庆中, 张漫, 汪懋华. 基于遗传神经网络的苹果颜色实时分级方法[J]. 中国图象图形学报,2000(9):71−76. [LI Qingzhong, ZHANG Man, WANG Maohua. Real-time apple color grading based on genetic neural network[J]. Journal of Image and Graphics,2000(9):71−76.
|
[14] |
王干, 孙力, 李雪梅, 等. 基于机器视觉的脐橙采后田间分级系统设计[J]. 江苏大学学报(自然科学版),2017,38(6):672−676. [WANG Gan, SUN Li, LI Xuemei, et al. Design of postharvest in-field grading system for navel orange based on machine vision[J]. Journal of Jiangsu University(Natural Science Edition),2017,38(6):672−676.
|
[15] |
AKIRA Mizushima, LU Renfu. An image segmentation method for apple sorting and grading using support vector machine and Otsu's method[J]. Computers and Electronics in Agriculture,2013,94:29−37.
|
[16] |
ZHANG Baohua, HUANG Wenqian, GONG Liang, et al. Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier[J]. Journal of Food Engineering,2015,146:143−151.
|
[17] |
MEHRDAD Baigvand, AHMAD Banakar, SAEED Minaei, et al. Machine vision system for grading of dried figs[J]. Computers and Electronics in Agriculture,2015,119:158−165.
|
[18] |
籍保平, 吴文才. 计算机视觉苹果分级系统[J]. 农业机械学报,2000(6):118−121. [JI Baoping, WU Wencai. Apple grading system with machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2000(6):118−121.
|
[19] |
陈艳军, 张俊雄, 李伟, 等. 基于机器视觉的苹果最大横切面直径分级方法[J]. 农业工程学报,2012,28(2):284−288. [CHEN Yanjun, ZHANG Junxiong, LI Wei, et al. Grading method of apple by maximum cross-sectional diameter based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(2):284−288.
|
[20] |
石瑞瑶, 田有文, 赖兴涛, 等. 基于机器视觉的苹果品质在线分级检测[J]. 中国农业科技导报,2018,20(3):80−86. [SHI Ruiyao, TIAN Youwen, LAI Xingtao. Development of apple intelligent on-line inspection and classification system based on machine vision[J]. Journal of Agricultural Science and Technology,2018,20(3):80−86.
|
[21] |
李顺琴, 陈勇, 何娇. 基于计算机视觉的橙子分级研究设计[J]. 农机化研究,2018(9):218−222. [LI Shunqin, CHEN Yong, HE Jiao. Design of oranges based on computer vision[J]. Journal of Agricultural Mechanization Research,2018(9):218−222.
|
[22] |
李颀, 胡家坤. 基于机器视觉的苹果在线分级[J]. 食品与机械,2020,36(8):123−128,153. [LI Qi, HU Jiakun. Research on apple online classification based on machine vision[J]. Food and Machinery,2020,36(8):123−128,153.
|
[23] |
MOMIN M A, RAHMAN M T, SULTANA M S, et al. Geometry-based mass grading of mango fruits using image processing[J]. Information Processing in Agriculture,2017,4(2):150−160.
|
[24] |
黄辰, 费继友. 基于图像特征融合的苹果在线分级方法[J]. 农业工程学报,2017,33(1):285−291. [HUANG Chen, FEI Jiyou. Online apple grading based on decision fusion of image features[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(1):285−291.
|
[25] |
PENG Hongxing, SHAO Yuanyuan, CHEN Keying, et al. Research on multi-class fruits recognition based on machine cision and SVM-Science Direct[J]. IFAC-Papers on Line,2018,51(17):817−821.
|
[26] |
冯斌, 汪懋华. 基于颜色分形的水果计算机视觉分级技术[J]. 农业工程学报,2002(2):141−144. [FENG Bin, WANG Maohua. Computer vision classification of fruit based on fractal color[J]. Transactions of the Chinese Society of Agricultural Engineering,2002(2):141−144.
|
[27] |
赵杰文, 刘少鹏, 邹小波, 等. 基于支持向量机的缺陷红枣机器视觉识别[J]. 农业机械学报,2008(3):113−115,147. [ZHAO Jiewen, LIU Shaopeng, ZOU Xiaobo, et al. Recognition of defect chinese dates by machine vision and support vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2008(3):113−115,147.
|
[28] |
饶秀勤, 应义斌. 水果按表面颜色分级的方法[J]. 浙江大学学报(工学版),2009,43(5):869−871. [RAO Xiuqin, YING Yibin. Grading a fruit by it's surface color[J]. Journal of Zhejiang University(Engineering Science),2009,43(5):869−871.
|
[29] |
DARIO Pietro Cavallo, MARIA Cefola, BERNARDO Pace, et al. Non-destructive and contactless quality evaluation of table grapes by a computer vision system[J]. Computers and Electronics in Agriculture,2019,156:558−564.
|
[30] |
MEGHA P Arakeri, Lakshmana. Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry[J]. Procedia Computer Science,2016,79:426−433.
|
[31] |
HOSSEIN Azarmdel, AHMAD Jahanbakhshi, SEYED Saeid Mohtasebi, et al. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM)[J]. Postharvest Biology and Technology,2020,166:111−201.
|
[32] |
MILLER B K, DELWICHEM J. Peach defect detection with machine vision[J]. Transaction of the ASAE,1991,34(6):2588−2597.
|
[33] |
LEEMANS V, MAGEIN H, DESTAIN M F. Defects segmentation on 'Golden Delicious' apples by using colour machine vision[J]. Computers and Electronics in Agriculture,1998,20(2):117−130.
|
[34] |
Arlimatti S R. Window based method for automatic classification of apple fruit[J]. Eng Res Appl,2012,2(4):1010−1013.
|
[35] |
刘禾, 汪懋华. 基于数字图像处理的苹果表面缺陷分类方法[J]. 农业工程学报,2004(6):138−140. [LIU He, WANG Maohua. Method for classification of apple surface defect based on digital image processing[J]. Transactions of the Chinese Society of Agricultural Engineering,2004(6):138−140.
|
[36] |
LI Jiangbo, RAO Xiuqin, WANG Fujie, et al. Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods[J]. Postharvest Biology and Technology,2013,82(Complete):59−69.
|
[37] |
KUMAR Dhakshina S, ESAKKIRAJAN S, BAMA S, et al. A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier[J]. Microprocessors and Microsystems,2020,76:90−103.
|
[38] |
JHA S N, GARG Ruchi. Non-destructive prediction of quality of intact apple using near infrared spectroscopy[J]. Journal of Food Science and Technology,2010,47(2):207−213.
|
[39] |
孙炳新, 匡立学, 徐方旭, 等. 苹果有效酸度的近红外无损检测研究[J]. 食品工业科技,2013,34(15):298−301. [SUN Bingxin, KUANG Lixue, XU Fangxu, et al. Nondestructive measurement of pH in apples using near infrared spectroscopy[J]. Science and Technology of Food Industry,2013,34(15):298−301.
|
[40] |
王转卫, 迟茜, 郭文川, 等. 基于近红外光谱技术的发育后期苹果内部品质检测[J]. 农业机械学报,2018,49(5):348−354. [WANG Zhuanwei, CHI Qian, GUO Wenchuan, et al. Internal quality detection of apples during late developmental period based on near-infrared spectral technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):348−354.
|
[41] |
XU Sai, LU Huazhong, CHRISTOPHER Ference, et al. Rapid nondestructive detection of water content and granulation in postharvest "Shatian" pomelo using visible/near-infrared spectroscopy[J]. Biosensors,2020,10(4):41.
|
[42] |
OLAOLUWA Omoniyi Olarewaju, ISA Bertling, LEMBE Samukelo Magwaza. Non-destructive evaluation of avocado fruit maturity using near infrared spectroscopy and PLS regression models[J]. Scientia Horticulturae,2016,199:229−236.
|
[43] |
CHEN Huazhou, XU Lili, TANG Guoqiang, et al. Rapid detection of surface color of Shatian pomelo using Vis-NIR spectrometry for the identification of maturity[J]. Food Analytical Methods,2016,9(1):192−201.
|
[44] |
李顺峰, 张丽华, 刘兴华, 等. 基于主成分分析的苹果霉心病近红外漫反射光谱判别[J]. 农业机械学报,2011,42(10):158−161. [LI Shunfeng, ZHANG Lihua, LIU Xinghua, et al. Discriminant analysis of apple moldy core using near infrared diffuse reflectance spectroscopy based on principal component analysis[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):158−161.
|
[45] |
TIAN Shijie, ZHANG Junhua, ZHANG Zhongxiong, et al. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core[J]. Infrared Physics and Technology,2019,100:117−124.
|
[46] |
刘燕德, 靳昙昙. 拉曼光谱技术在农产品质量安全检测中的应用[J]. 光谱学与光谱分析,2015,35(9):2567−2572. [LIU Yande, JIN Tantan. Application of raman spectroscopy technique to agricultural products quality and safety determination[J]. Spectroscopy and Spectral Analysis,2015,35(9):2567−2572.
|
[47] |
RASOUL Malekfar, NASIM Mohammadian, SARA Abbasian, et al. A back-scattering laser Raman combination method of EFIRS and SERS to study TiO2 nanoparticles[J]. Journal of Alloys and Compounds,2009,488(1):325−327.
|
[48] |
高晓阳, PAUL Heinemann, JOSEPH Irudayaraj. 苹果擦伤拉曼光谱无损检测虚拟系统研究[J]. 农业工程学报,2005(3):130−133. [GAO Xiaoyang, PAUL Heinemann, JOSEPH Irudayaraj. Non-destructive apple bruise detection with Raman spectroscopy and its virtual instrumentation[J]. Transactions of the Chinese Society of Agricultural Engineering,2005(3):130−133.
|
[49] |
高晓阳, PAUL Heinemann, JOSEPH Irudayaraj. 基于LabVIEW的苹果擦伤分级系统设计[J]. 农业机械学报,2006(4):152−154. [GAO Xiaoyang, PAUL Heinemann, JOSEPH Irudayaraj. Design of apple scratch grading system based on LabVIEW[J]. Transactions of the Chinese Society for Agricultural Machinery,2006(4):152−154.
|
[50] |
陈思雨, 张舒慧, 张纾, 等. 基于共聚焦拉曼光谱技术的苹果轻微损伤早期判别分析[J]. 光谱学与光谱分析,2018,38(2):430−435. [CHEN Siyu, ZHANG Shuhui, ZHANG Shu, et al. Detection of early tiny bruises in apples using confocal Raman spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(2):430−435.
|
[51] |
JOSU Trebolazabala, MAITE Maguregui, HÉCTOR Morillas, et al. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits[J]. Spectrochim Acta A Mol Biomol Spectrosc,2013,105:391−399.
|
[52] |
JOSU Trebolazabala, MAITE Maguregui, HÉCTOR Morillas, et al. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2017,180:138−143.
|
[53] |
FRAN Nekvapil, IOANA Brezestean, DANIEL Barchewitz, et al. Citrus fruits freshness assessment using Raman spectroscopy[J]. Food Chemistry,2018,242:560−567.
|
[54] |
FAN Yuxia, LAI Keqiang, BARBARA A Rasco, et al. Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis[J]. LWT - Food Science and Technology,2015,60(1):352−357.
|
[55] |
PAN Leiqing, ZHANG Qiang, ZHANG Wei, et al. Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network[J]. Food Chemistry,2016,192:134.
|
[56] |
GAMAL ElMasry, WANG Ning, CLÉMENT Vigneault. Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks[J]. Postharvest Biology and Technology,2008,52(1):1−8.
|
[57] |
孙梅, 陈兴海, 张恒, 等. 高光谱成像技术的苹果品质无损检测[J]. 红外与激光工程,2014,43(4):1272−1277. [SUN Mei, CHEN Xinghai, ZHANG Heng, et al. Nondestructive inspect of apple quality with hyperspectral imaging[J]. Infrared and Laser Engineering,2014,43(4):1272−1277.
|
[58] |
JANOS C Keresztes, ELIEN Diels, MOHAMMAD Goodarzi, et al. Glare based apple sorting and iterative algorithm for bruise region detection using shortwave infrared hyperspectral imaging[J]. Postharvest Biology and Technology,2017,130:103−115.
|
[59] |
WANG Zhaodi, HU Menghan, ZHAI Guangtao. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data[J]. Sensors,2018,18(4):1126.
|
[60] |
RAJKUMAR P, WANG N, EIMASRY G, et al. Studies on banana fruit quality and maturity stages using hyperspectral imaging[J]. Journal of Food Engineering,2012,108(1):194−200.
|
[61] |
彭彦昆, 李永玉, 赵娟, 等. 基于高光谱技术苹果硬度快速无损检测方法的建立[J]. 食品安全质量检测学报,2012,3(6):667−671. [PENG Yankun, LI Yongyu, ZHAO Juan, et al. Establishment of rapid and non-destructive detection method of apple firmness using hyperspectral images[J]. Journal of Food Safety and Quality,2012,3(6):667−671.
|
[62] |
DONG Jinlei, GUO Wenchuan. Nondestructive determination of apple internal qualities using near-infrared hyperspectral reflectance imaging[J]. Food Analytical Methods,2015,8(10):2635−2646.
|
[63] |
王顺, 黄星奕, 吕日琴, 等. 水果品质无损检测方法研究进展[J]. 食品与发酵工业,2018,44(11):319−324. [WANG Shun, HUANG Xingyi, LIU Riqin, et al. Research progress of nondestructive detection methods in fruit quality[J]. Food and Fermentation Industries,2018,44(11):319−324.
|
[64] |
徐赛, 陆华忠, 丘广俊, 等. 水果品质无损检测研究进展及应用现状[J]. 广东农业科学,2020,47(12):229−236. [XU Sai, LU Huazhong, QIU Guangjun, et al. Research progress and application status of fruit quality nondestructive detection technology[J]. Guangdong Agricultural Sciences,2020,47(12):229−236.
|
[65] |
窦文卿, 柴春祥, 鲁晓翔. 无损检测技术在水果品质评价中应用的研究进展[J]. 食品工业科技,2020,41(24):354−359. [DOU Wenqing, CHAI Chunxiang, LU Xiaoxiang. Research progress of non-destructive detection technique in fruit quality evaluation[J]. Science and Technology of Food Industry,2020,41(24):354−359.
|