LV Fengjiao, GUO Yue, XU Lu, et al. Optimization of Preparation Process of Vaterite Calcium Carbonate and Effect of Chitinase on Calcium Carbonate[J]. Science and Technology of Food Industry, 2021, 42(17): 153−160. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110141.
Citation: LV Fengjiao, GUO Yue, XU Lu, et al. Optimization of Preparation Process of Vaterite Calcium Carbonate and Effect of Chitinase on Calcium Carbonate[J]. Science and Technology of Food Industry, 2021, 42(17): 153−160. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110141.

Optimization of Preparation Process of Vaterite Calcium Carbonate and Effect of Chitinase on Calcium Carbonate

More Information
  • Received Date: November 16, 2020
  • Available Online: June 30, 2021
  • In order to establish a high-yield and high-purity vaterite calcium carbonate synthesis process, CaCl2 was used as raw material. The effects of chitinase addition, carbonization temperature, pH, CaCl2 concentration and carbonization time on the carbonization rate of calcium ions were investigated through the single factor, and orthogonal experiment was used to optimize the process. Scanning electron microscope (SEM) and infrared spectroscopy (IR) were applied to investigate the regulation of chitinase on the crystal form and composition of calcium carbonate under optimized conditions. The results showed that the addition of chitinase rarely affected the calcium ion carbonization rate, while the carbonization temperature, pH, CaCl2 concentration and carbonization time had significant effects on the calcium ion carbonization rate. At 35 ℃, the gas flow rate was 1 L/min, the 1 mol/L CaCl2 solution with pH 12.5 was continuously fed with CO2 for 6 min to carbonize, and the effect of calcium ion carbonization was the best, with a carbonization rate of 99.88%. Characterization results such as SEM and IR showed that 2~8 μm calcite-type calcium carbonate microspheres, which assembled from spherical particles and a small part of diamond-shaped blocks, were obtained without chitinase regulation. After adding chitinase, the diamond-shaped block shape disappeared, and the size of calcium carbonate microspheres gradually decreased as the adding proportion of chitinase increased. The high-purity fluffy vaterite-type calcium carbonate microspheres with diameter of less than 1 μm, were obtained with uniform size when the enzyme calcium mass ratio was 0.01:1. The results indicated that high-yield and high-purity vaterite calcium carbonate could be prepared under the control of chitinase. The research was of great significance for the biomimetic preparation of food and pharmaceutical grade calcium carbonate.
  • [1]
    邓勤, 赖家凤, 梁兴唐, 等. 牡蛎壳制备柠檬酸钙的工艺研究[J]. 食品工业科技,2017,38(11):251−254. [Deng Q, Lai J F, Liang X T, et al. Study on the technology of preparation of the calcium citrate from oyster shells[J]. Science and Technology of Food Industry,2017,38(11):251−254.
    [2]
    韩晓梅, 王晨笑, 杨鑫, 等. 利用蟹壳制备乳酸钙和甲壳素的技术研究[J]. 食品研究与开发,2018,39(11):65−70. [Han X M, Wang C X, Yang X, et al. Prepration of vaterite nano-sized CaCO3 with elipse ball-like[J]. Food Research And Development,2018,39(11):65−70. doi: 10.3969/j.issn.1005-6521.2018.11.013
    [3]
    刘德婧, 马美湖. 蛋壳源有机钙的研究发展现状[J]. 食品工业科技,2015,39(9):372−376. [Liu D J, Ma M H. Status of research and development of organic calcium from eggshell[J]. Science and Technology of Food Industry,2015,39(9):372−376.
    [4]
    吴刚, 章守权, 方俊, 等. L-苯丙氨酸为模板碳酸钙纳米晶体的生长[J]. 安徽工业大学学报,2010,27(1):34−37. [Wu G, Zhang S Q, Fang J, et al. Growth of calcium carbonate nano-crystal using L-phenylalanine as a template[J]. Journal of Anhui University of Technology,2010,27(1):34−37.
    [5]
    徐基贵, 朱军, 史洪伟. L-赖氨酸对CaCO3晶型和形状调控[J]. 合肥工业大学学报(自然科学版),2011,34(6):924−926. [Xu J G, Zhu J, Shi H W. Shape and morphology of CaCO3 crystal controlled by L-lysine[J]. Journal of Hefei University of Technology (Natural Science),2011,34(6):924−926.
    [6]
    张群, 张清. 不同晶型碳酸钙的仿生矿化研究[J]. 硅酸盐通报,2014,33(5):1236−1240. [Zhang Q, Zhang Q. Study on biomimetic mineralization of calcium carbonate with different crystallines[J]. Bulletin of the Chinese Ceramic Society,2014,33(5):1236−1240.
    [7]
    王宇轩, 徐颖, 王东平, 等. 球霰石的性质及其应用进展[J]. 安徽理工大学学报(自然科学版),2017,37(2):76−80. [Wang Y X, Xu Y, Wang D P, et al. Properties and applications of vaterite[J]. Journal of Anhui University of Science and Technology (Natural Science),2017,37(2):76−80.
    [8]
    蒋久信, 吴月, 何瑶. 亚稳态球霰石相碳酸钙的调控制备进展[J]. 无机材料学报,2017,32(7):681−690. [Jiang J X, Wu Y, He Y. Progress in tuning of metastable vaterite calcium carbonate[J]. Journal of Inorganic Materials,2017,32(7):681−690. doi: 10.15541/jim20160484
    [9]
    卓民权, 赵历, 李艳琳, 等. 球霰石碳酸钙宏量制备的研究进展[J]. 化工技术与开发,2020,49(4):25−28. [Zhuo M Q, Zhao L, Li Y L, et al. Research progress of scale preparation of aragonite calcium carbonate[J]. Technology & Development of Chemical Industry,2020,49(4):25−28. doi: 10.3969/j.issn.1671-9905.2020.04.008
    [10]
    Green D W, Bolland B J R F, Kanczler J M, et al. Augmentation of skeletal tissue formation in impaction bone grafting using vaterite microsphere biocomposites[J]. Biomaterials,2009,30:1918−1927. doi: 10.1016/j.biomaterials.2008.12.052
    [11]
    萨翼. 增加骨密度保健食品配方规律及对监管研发建议[J]. 食品工业科技,2021,42(4):314−318. [Sa Y. Increase bone mineral density health food formula rule and recommendations for regulatory and development[J]. Science and Technology of Food Industry,2021,42(4):314−318.
    [12]
    Tas A C. Use of vaterite and calcite in forming calcium phosphate cement scaffolds[J]. Ceramic Engineering and Science Proceedings,2009,28(9):135−150.
    [13]
    Bukreeva T V, Marchenko I V, Borodina T N, et al. Calcium carbonate and titanium dioxide particles as a basis for container fabrication for brain delivery of compounds[J]. Doklady Physical Chemistry,2011,440(1):165−167. doi: 10.1134/S001250161109003X
    [14]
    Won Y H, Jang H S, Chung D W, et al. Multifunctional calcium carbonate microparticles: Synthesis and biological applications[J]. Journal of Materials Chemistry,2010,20(36):7728−7733. doi: 10.1039/c0jm01231a
    [15]
    夏宏宇, 张群, 王刚, 等. 球形和橄榄形球霰石的简易制备研究[J]. 人工晶体学报,2015,44(6):1701−1706. [Xia H Y, Zhang Q, Wang G, et al. Study on facile fabrication of spherical and olivary vaterite[J]. Journal of Synthetic Crystals,2015,44(6):1701−1706. doi: 10.3969/j.issn.1000-985X.2015.06.048
    [16]
    程娜, 周梅芳, 陈鹏宇. 碳化法可控制备纳米碳酸钙研究进展[J]. 过程工程学报,2017,17(2):412−419. [Cheng N, Zhou M F, Chen P Y. Controlled synthesis of nano-calcium carbonate via carbonization method: A Review[J]. The Chinese Journal of Process Engineering,2017,17(2):412−419. doi: 10.12034/j.issn.1009-606X.216287
    [17]
    高平章, 艾杨城, 钟榕榕, 等. 牡蛎壳超细球霰石碳酸钙的制备与表征[J]. 食品与发酵工业,2020,46(17):151−157. [Gao P Z, Ai Y C, Zhong R R, et al. Preparation and characterization of ultrafine vaterite calcium carbonate from oyster shells[J]. Food and Fermentation Industries,2020,46(17):151−157.
    [18]
    王静梅, 姚松年. 壳聚糖-氨基酸体系中碳酸钙模拟生物矿化的研究[J]. 无机化学学报,2002,18(3):249−254. [Wang J M, Yao S N. The study of mimetic biomineralization of calcium carbonate in some amino acid system[J]. Chinese Journal of Inorganic Chemistry,2002,18(3):249−254. doi: 10.3321/j.issn:1001-4861.2002.03.005
    [19]
    尹晓爽, 张慧, 杨文忠, 等. 胞外多糖调控碳酸钙结晶的研究[J]. 人工晶体学报,2010,39(6):1529−1534. [Yin X S, Zhang H, Yang W Z, et al. Investigation of CaCO3 crystallization induced by extracellular polysaccharide[J]. Journal of Synthetic Crystals,2010,39(6):1529−1534. doi: 10.3969/j.issn.1000-985X.2010.06.037
    [20]
    Pérez-Villarejo L, Takabait F, Mahtout L, et al. Synthesis of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium[J]. Ceramics International,2018(44):5291−5296.
    [21]
    欧阳志远, 杨磊, 刘艳茹, 等. 镁离子/蔗糖体系中碳酸钙结晶的仿生合成初步研究[J]. 电子显微学报,2019,8(3):264−270. [Ouyang Z Y, Yang L, Liu Y R, et al. A preliminary study on biomimetic synthesis of calcium carbonate crystals in magnesium ion /sucrose system[J]. Journal of Chinese Electron Microscopy Society,2019,8(3):264−270. doi: 10.3969/j.issn.1000-6281.2019.03.009
    [22]
    竹文坤, 罗学刚, 林晓燕, 等. 蛋清蛋白模板法控制合成球形碳酸钙[J]. 人工晶体学报,2010,39(5):1336−1341. [Zhu W K, Luo X G, Lin X Y, et al. Synthesis of CaCO3 crystals using egg white protein as template[J]. Journal of Synthetic Crystals,2010,39(5):1336−1341. doi: 10.3969/j.issn.1000-985X.2010.05.049
    [23]
    马晓明, 司媛媛, 杨林, 等. 胃蛋白酶指导下水醇体系中碳酸钙的仿生合成与表征[J]. 厦门大学学报(自然科学版),2011,50(4):742−747. [Ma X M, Si Y Y, Yang L, et al. Pepsin-controlled synthesis of sphere-shaped vaterite in ethanol/water mixture solvent[J]. Journal o f Xiamen University (Natural Science),2011,50(4):742−747.
    [24]
    Liu Y X, Chen Y P, Huang X C, et al. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch[J]. Materials Science and Engineering C,2017(79):457−464.
    [25]
    陈茜文, 王佳丽, 许春雨. 克氏原螯虾壳膜几丁质酶的分离纯化[J]. 食品工业科技,2018,39(23):159−163. [Chen X W, Wang J L, Xu C Y. Isolation and purification of chitinase from shellfish of Procambarus clarkia[J]. Science and Technology of Food Industry,2018,39(23):159−163.
    [26]
    Xie X L, Chen Q X, Lin J C, et al. Purification and some properties of β-N-Acetyl-D-glucosaminidase from prawn (Penaeus vannamei)[J]. Marine Biology, 2004, 146: 143-148.
    [27]
    Buchholz F. Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba[J]. Polar Biology,1989,9:311−317. doi: 10.1007/BF00287429
    [28]
    Spindler-Barth M, Van Wormhoudt A, Spindler K D. Chitinolytic enzymes in the integument and midgut-gland of the shrimp Palaemon serratus during the moulting cycle[J]. Marine Biology,1990,106:49−52. doi: 10.1007/BF02114673
    [29]
    Kono M, Wilder M N, Matsui T, et al. Chitinolytic enzyme activities in the hepatopancreas, tail fan and hemolymph of Kuruma prawn Penaeus japonicus during molt cycle[J]. Fisheries Science,1995,61:727−728. doi: 10.2331/fishsci.61.727
    [30]
    Peters G, Saborowski R, Buchholz F, et al. Two distinct forms of the chitin-degrading enzyme N-acetyl-β-D-glucosaminidase in the Antarctic krill: Specialists in digestion and moult[J]. Marine Biology,1999,134:697−703. doi: 10.1007/s002270050585
    [31]
    Kramer K J, Muthukrishnan S. Insect chitinases: Molecular biology and potential use as biopesticides[J]. Insect Biochemistry and Molecular Biology,1997,27(11):887−900. doi: 10.1016/S0965-1748(97)00078-7
    [32]
    徐焕焕, 华睿清, 吴刚. 球形方解石的合成和表征[J]. 人工晶体学报,2019,48(11):2141−2145. [Xu H H, Hua R Q, Wu G. Synthesis and characterization of spherical-like calcite[J]. Journal of Synthetic Crystals,2019,48(11):2141−2145. doi: 10.3969/j.issn.1000-985X.2019.11.027
    [33]
    王芬, 余军霞, 肖春桥, 等. CO2碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报,2017,36(1):43−50, 56. [Wang F, Yu J X, Xiao C Q, et al. Preparation of micro-size food-grade vaterite CaCO3 by CO2 carbonization method[J]. Bulletin of the Chinese Ceramic Society,2017,36(1):43−50, 56.
  • Related Articles

    [1]ZHU Cheng-hao, TANG Hui, CHAI Sheng-feng, LIU Zhi-xin, WANG Ting, LI Yu-liang. Analysis and Evaluation of Nutritional Components from Leaves and Flowers of Camellia nitidissima in Grafted and Seedling Trees[J]. Science and Technology of Food Industry, 2019, 40(20): 329-333,347. DOI: 10.13386/j.issn1002-0306.2019.20.053
    [2]FANG Ling, MA Hai-xia, LI Lai-hao, YANG Xian-qing, RONG Hui, ZHU Chang-bo. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry, 2018, 39(2): 301-307,313. DOI: 10.13386/j.issn1002-0306.2018.02.056
    [3]ZHU Yan-chao, LOU Yong-jiang, XIONG Guo-tong, LIU Jian, LIU Ting, LOU Yue. Composition analysis and evaluation of Goosefish liver nutrition[J]. Science and Technology of Food Industry, 2017, (05): 356-360. DOI: 10.13386/j.issn1002-0306.2017.05.059
    [4]WANG Ting-ting, GAO Guan-shi, WU Su-rui, YANG Zhen-fu, GUI Ming-ying. Analysis of nutritional compositions and evaluation of nutritional quality for Polyporus ellisii[J]. Science and Technology of Food Industry, 2016, (21): 342-346. DOI: 10.13386/j.issn1002-0306.2016.21.058
    [5]MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063
    [6]CHE Yu-hong, YANG Bo, Aisajan·Mamat, GUO Chun-miao, ZHANG Jun, MA Wen-peng, JIANG Ping. Analysis and evaluation of nutritional composition of big quince in Shache county of Xinjiang[J]. Science and Technology of Food Industry, 2015, (24): 345-348. DOI: 10.13386/j.issn1002-0306.2015.24.067
    [7]JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067
    [8]CUI Ling-jun, WANG Bao-ping, QIAO Jie, WANG Wei-wei, ZHANG Jian-guo. Analysis and evaluation of nutritive composition of four species of Paulownia flowers[J]. Science and Technology of Food Industry, 2014, (24): 338-341. DOI: 10.13386/j.issn1002-0306.2014.24.063
    [9]YU Gang, ZHANG Hong-jie, YANG Shao-ling, YANG Xian-qing, HAO Shu-xian, ZHANG Peng, LIN Wan-ling. Nutritional component analysis and quality evaluation of Ryukyu squid in South China sea[J]. Science and Technology of Food Industry, 2014, (18): 358-361. DOI: 10.13386/j.issn1002-0306.2014.18.072
    [10]LIU Shu-chen, LI Ren-wei, LIAO Ming-tao, ZHAO Qiao-ling, LIN Sen-sen, DAI Zhi-yuan. Nutritional components analysis and quality evaluation of different muscle parts of bigeye tuna[J]. Science and Technology of Food Industry, 2013, (23): 340-343. DOI: 10.13386/j.issn1002-0306.2013.23.065
  • Cited by

    Periodical cited type(10)

    1. 白佳丽,崔思琪,张瀚文,李雨鑫,古昕雨,雷虹,李文辉. 果蔬清洗机对蔬菜中营养物质的影响. 黑龙江大学工程学报(中英俄文). 2024(01): 104-112 .
    2. 王伟. 臭氧在植物保护实践中的应用与展望. 湖北植保. 2024(02): 18-20 .
    3. 叶云霞,赵英杰. 去除果蔬农药残留方法的研究现状. 农机使用与维修. 2024(08): 119-121 .
    4. 唐雪梅,纪铖臻,卢明瑞,温瑞明,魏静,吴龙. 热带果蔬农药残留处理方法及降解技术研究进展. 食品安全质量检测学报. 2024(19): 1-12 .
    5. 陈思达,张凤英,罗秋水. 果蔬解毒清洗机清洗效果探讨. 生物灾害科学. 2023(02): 249-255 .
    6. 杨书园,蔡颖婷,黄超,余叶贝,王珺菽,伍洋涛,卜令君,周石庆. 掺硼金刚石膜电极除菌除农药性能及机理探讨. 中国给水排水. 2023(13): 103-108 .
    7. 黄友举,初梦圆,路晨,于延冲. 臭氧水降解土壤农药残留研究. 安徽农业科学. 2023(20): 70-72+117 .
    8. 陆胜民,王璐,郑美瑜,汪丽霞,赵四清,朱卫东. 干燥方式和臭氧对胡柚小青果干品有效成分和农残的影响. 保鲜与加工. 2022(08): 71-75+81 .
    9. 孙倩,吴洪生,丁军,王娜,张磊,程诚,石陶然,Faheem Mohamud,倪妮,田伟,吴云成,单正军. 活性氧降解水中乐果效率及机理分析. 环境科学与技术. 2022(S1): 1-6 .
    10. 杨佳洁,李敏敏,肖欧丽,赵浩然,陈捷胤,戴小枫,张民伟,孔志强. 果蔬加工过程农药残留行为研究及加工因子在风险评估中的应用. 食品安全质量检测学报. 2022(22): 7255-7263 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (259) PDF downloads (21) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return