WANG Nannan, WANG Jingrui, LI Lu, et al. Preparation of Antioxidant Peptides from Tea Residue and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(17): 145−152. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110114.
Citation: WANG Nannan, WANG Jingrui, LI Lu, et al. Preparation of Antioxidant Peptides from Tea Residue and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(17): 145−152. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110114.

Preparation of Antioxidant Peptides from Tea Residue and Its Antioxidant Activity

More Information
  • Received Date: September 09, 2020
  • Available Online: July 04, 2021
  • The antioxidant peptides were extracted by enzymatic hydrolysis of tea residues protein. Taking the reducing power and degree of hydrolysis of antioxidant peptides as the indicators, the single factor test and response surface methodology were used together to optimize the enzymatic hydrolysis conditions for preparing tea residue protein antioxidant peptides. Besides, this hydrolysate was fractionated by the ultrafiltration. Then, the effects of temperature, pH, metal ions, food additives and digestion environment in vitro on the reducing power stability of tea residue protein antioxidant peptides with molecular weight less than 3 kDa were investigated. The response surface methodology showed that the reducing power was 0.316 under the optimum conditions (substrate concentration of 2%, the time of 3 h, the temperature of 51 oC, the pH of 8.0, and the enzyme/substrate of 3034 U/g). When the molecular weight was less than 3 kDa, the reducing power of the antioxidant peptide was 0.412, which was 30.77% higher than before purification and had better vitality and stability. When the temperature rose from 30 oC to 90 oC, the reducing power decreased from 0.410 to 0.360. The peptides can still maintain good reducing power in the environment of acid and alkali and food additives. The reducing power decreased from 0.412 to 0.327 after 8 h in simulated digestion environment.
  • [1]
    余芳. 茶叶生物活性成分的功能与提取制备[J]. 江苏调味副食品,2010,27(2):42−45. [Yu F. Function of the tea bioactive components and their extraction and preparation[J]. Jiangsu Condiment and Subsidiary Food,2010,27(2):42−45. doi: 10.3969/j.issn.1006-8481.2010.02.013
    [2]
    李汝月, 刘佩, 胡俊杰, 等. 霉茶蛋白对自发性高血压大鼠肾脏的保护作用及机制研究[J]. 中国药师,2020,23(7):1288−1291. [Li R Y, Liu P, Hu J J, et al. Protective effect and mechanism of meicha protein on kidney of spontaneously hypertensive rats[J]. China Pharmacist,2020,23(7):1288−1291. doi: 10.3969/j.issn.1008-049X.2020.07.010
    [3]
    苏可盈. 四种黑茶蛋白的降血糖活性及其机理的研究[D]. 广州: 华南理工大学, 2019: 28−30.

    Su K Y. Study on hypoglycemic bioactivities and mechanisms of proteins from four black teas[D]. Guangzhou: South China University of Technology, 2019: 28−30.
    [4]
    李燕, 蔡东联, 夏雪君, 等. 茶蛋白液预防辐射引起的突变效应[J]. 癌变. 畸变. 突变,2001,13(1):32−36. [Li Y, Cai D L, Xia X J, et al. Tea protein liquid prevents radiation-induced mutation effects[J]. Carcinogenesis, Teratogenesis & Mutagenesis,2001,13(1):32−36.
    [5]
    李志威. 茶渣的综合利用研究进展[J]. 现代农业科技,2020(6):219−220. [Li Z W. Research progress on comprehensive utilization of tea dregs[J]. Modern Agricultural Science and Technology,2020(6):219−220. doi: 10.3969/j.issn.1007-5739.2020.06.137
    [6]
    刘成顺, 段淑敏, 王树茂, 等. ‘东方美人’茶茶渣对甲基紫的吸附性能[J]. 亚热带农业研究,2020,16(2):126−131. [Liu C S, Duan S M, Wang S M, et al. Adsorption of methyl violet onto ‘Oriental Beauty’ tea residue[J]. Subtropical Agriculture Research,2020,16(2):126−131.
    [7]
    谢月琴, 孙小红, 汪东阳, 等. 凉茶渣对育肥猪生长性能、胴体性状和肉品质的影响[J]. 动物营养学报,2019,31(10):4776−4783. [Xie Y Q, Sun X H, Wang D Y, et al. Effects of herbal tea residue on growth performance, carcass traits and meat quality of finishing pigs[J]. Chinese Journal of Animal Nutrition,2019,31(10):4776−4783.
    [8]
    王灿, 许俊强, 张应华. 不同配比有机废弃物在茄果类蔬菜穴盘育苗中的应用[J]. 农业工程技术,2019,39(13):64−68. [Wang C, Xu J Q, Zhang Y H. Application of organic wastes with different proportions in the seedling raising of solanace fruit vegetables[J]. Agricultural Engineering Technology,2019,39(13):64−68.
    [9]
    梁杰, 汪秀妹, 杨艺伟, 等. 茶渣蛋白的提取及酶解产物抗氧化性质研究[J]. 食品科技,2020,45(9):214−220. [Liang J, Wang X M, Yang Y W, et al. Extraction of tea residue protein and antioxidant activity of enzymatic hydrolysates[J]. Food Science and Technology,2020,45(9):214−220.
    [10]
    Ayim I, Ma H, Ali Z, et al. Preparation of antioxidant peptides from tea (Camellia sinensis L.) residue[J]. Journal of Food Measurement and Characterization,2018,12(3):2128−2137. doi: 10.1007/s11694-018-9828-y
    [11]
    I Ayim, H Ma, E A Alenyorege, et al. Effect of alkali concentration on functionality, lysinoalanine formation, and structural characteristics of tea residue proteins[J]. Journal of Food Process Engineering,2018,41(8):e12877. doi: 10.1111/jfpe.12877
    [12]
    谭晓妍, 孙君社, 宁慧娟, 等. 碱性电解水耦合酶提取茶渣蛋白工艺优化[J]. 食品工业科技,2018,39(15):213−218. [Tan X Y, Sun J S, Ning H J, et al. Optimization of extraction process of protein from exhausted tea by alkaline electrolyzed-reducing water synergized with protease[J]. Science and Technology of Food Industry,2018,39(15):213−218.
    [13]
    王兴, 黄忠明, 王莉, 等. 苦荞蛋白模拟消化产物抗氧化活性及组成研究[J]. 中国食品学报,2009,9(6):10−15. [Wang X, Huang Z M, Wang L, et al. The antioxidation activity and composition pf tartary buckwheat protein products produced by simulating gastrointestinal digestion[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(6):10−15. doi: 10.3969/j.issn.1009-7848.2009.06.002
    [14]
    汤国营, 戴军, 蔡木易, 等. 大豆低聚肽分子质量分布的测定及体外消化实验[J]. 食品与发酵工业,2006(5):131−133. [Tang G Y, Dai J, Cai M Y, et al. Study on molecular weight distribution and digestion test in vitro of soy oligopeptides[J]. Food and Fermentation Industries,2006(5):131−133. doi: 10.3321/j.issn:0253-990X.2006.05.035
    [15]
    Sarmadi B H, Ismail A. Antioxidative peptides from food proteins: A review[J]. Peptides,2010,31(10):1949−1956. doi: 10.1016/j.peptides.2010.06.020
    [16]
    Xia J, Song H, Huang K, et al. Purification and characterization of antioxidant peptides from enzymatic hydrolysate of mungbean protein[J]. Journal of Food Science,2020,85(6):1735−1741. doi: 10.1111/1750-3841.15139
    [17]
    Dou B, Liu Y, Liu Y, et al. Isolation and characterization of angiotensin i converting enzyme (ACE) inhibitory peptides from rice bran proteins and evaluation of activity and stability[J]. Pakistan Journal of Zoology,2020,52(4):1397−1405.
    [18]
    Paisansak S, Sangtanoo P, Srimongkol P, et al. Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes)[J/OL]. Journal of Food Science and Technology-Mysore, 2020, https: //doi. org/10.1007/s13197-020-04517-z.
    [19]
    Jayaprakash R, Perera C O. Partial purification and characterization of bioactive peptides from cooked new zealand green-lipped mussel (Perna canaliculus) protein hydrolyzates[J]. Foods,2020,9(7):879. doi: 10.3390/foods9070879
    [20]
    Feng J, Ma Y, Sun P, et al. Purification and characterisation of alpha-glucosidase inhibitory peptides from defatted camellia seed cake[J/OL]. International Journal of Food Science and Technology, 2020, https: //doi. org/10.1111/ijfs. 14613.
    [21]
    文静, 解新安, 李雁, 等. 微波辅助碱法提取茶渣蛋白工艺及抗氧化活性研究[J]. 粮食与油脂,2017,30(5):41−44. [Wen J, Xie X A, Li Y, et al. Technology and antioxidant activity of tea-residue protein using microwave-assisted alkaline extraction[J]. Cereals & Oils,2017,30(5):41−44. doi: 10.3969/j.issn.1008-9578.2017.05.012
    [22]
    周慧江, 朱振宝, 易建华. 核桃蛋白水解物水解度测定方法比较[J]. 粮食与油脂,2012,25(2):28−30. [Zhou H J, Zhu Z B, Yi J H. Various methods available for determination of hydrolyzed degree of walnut protein[J]. Cereals & Oils,2012,25(2):28−30. doi: 10.3969/j.issn.1008-9578.2012.02.008
    [23]
    Shazly A B, He Z, El-Aziz M A, et al. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates[J]. Food Chemistry,2017,232:753−762. doi: 10.1016/j.foodchem.2017.04.071
    [24]
    Huang X, Tu Z, Xiao H, et al. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid[J]. Food and Bioproducts Processing,2013,91(C1):1−6.
    [25]
    Li Y, Jiang B, Zhang T, et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry,2008,106(2):444−450. doi: 10.1016/j.foodchem.2007.04.067
    [26]
    You L, Zhao M, Regenstein J M, et al. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion[J]. Food Chemistry,2011,124(1):188−194. doi: 10.1016/j.foodchem.2010.06.007
    [27]
    刘文颖, 周明, 冯晓文, 等. 乳清低聚肽的ACE抑制作用及其稳定性研究[J]. 食品与发酵工业,2020,46(16):1−9. [Liu W Y, Zhou M, Feng X W, et al. Study on stability and ACE inhibitory activity of whey oligopeptides[J]. Food and Fermentation Industries,2020,46(16):1−9.
    [28]
    Ao J, Li B. Stability and antioxidative activities of casein peptide fractions during simulated gastrointestinal digestion in vitro: Charge properties of peptides affect digestive stability[J]. Food Research International,2013,52(1):334−341. doi: 10.1016/j.foodres.2013.03.036
    [29]
    陈佳捷, 吴文惠, 倪玲, 等. 蚕蛹蛋白和蚕蛹短肽的模拟胃肠道消化特性研究[J]. 食品工业科技,2014,35(1):333−338. [Chen J J, Wu W H, Ni L, et al. Nutritional characteristics of silkworm pupae protein and peptides after simulated gastric and simulated intestinal digestion in vitro[J]. Science and Technology of Food Industry,2014,35(1):333−338.
    [30]
    王惠敏, 李茜, 蔡甜甜, 等. 亚麻籽粕抗氧化肽制备工艺的响应面法优化[J]. 食品工业科技,2018,39(3):220−225. [Wang H M, Li Q, Cai T T, et al. Optimization of preparation of antioxidant peptides from flaxseed meal by response surface methodology[J]. Science and Technology of Food Industry,2018,39(3):220−225.
    [31]
    芦鑫, 李若昀, 张丽霞, 等. 芝麻抗氧化肽分离纯化与结构鉴定的研究[J]. 中国粮油学报,2019,34(3):45−52. [Lu X, Li R Y, Zhang L X, et al. Separation, purification and structure identification of antioxidant peptides derved from sesame protein[J]. Journal of the Chinese Cereals and Oils Association,2019,34(3):45−52.
    [32]
    于慧, 李明艳, 张典, 等. 响应面试验优化裙带菜蛋白酶解工艺及酶解液抗氧化活性[J]. 食品科学,2017,38(6):96−103. [Yu H, Li M Y, Zhang D, et al. Optimization of enzymatic hydrolysis of undaria pinnatifida protein and antioxidant activity of its hydrolysate[J]. Food Science,2017,38(6):96−103. doi: 10.7506/spkx1002-6630-201706015
    [33]
    尹佳, 胡金德, 王丽华, 等. 葡萄籽多肽的制备及其抗氧化活性[J]. 食品工业,2020,41(11):127−130. [Yin J, Hu J D, Wang L H, et al. Preparation of grape seed peptide and its antioxidant activity[J]. The Food Industry,2020,41(11):127−130.
    [34]
    夏吉安, 黄凯, 李森, 等. 绿豆抗氧化肽的酶法制备及其抗氧化活性[J]. 食品与生物技术学报,2020,39(10):40−47. [Xia J A, Hang K, Li S, et al. Enzymatic preparation of mung bean antioxidant peptides and antioxidant activity investigation[J]. Journal of Food Science and Biotechnology,2020,39(10):40−47. doi: 10.3969/j.issn.1673-1689.2020.10.006
    [35]
    Liu Q, Kong B, Xiong Y L, et al. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis[J]. Food Chemistry,2010,118(2):403−410. doi: 10.1016/j.foodchem.2009.05.013
    [36]
    李永富. 茶渣蛋白和茶渣多肽的制备及性质的初步研究[D]. 上海: 上海师范大学, 2015: 37−39.

    Li Y F. Tea-leaf protein and dross polypeptide preparation and properties ofa preliminary study[D]. Shanghai: Shanghai Normal University, 2015: 37−39.
    [37]
    Mirzaei M, Mirdamadi S, Safavi M, et al. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences[J]. Lwt-Food Science and Technology,2020,130:109710. doi: 10.1016/j.lwt.2020.109710
    [38]
    刘华勇. 水酶法同时提取辣木籽油和抗氧化肽的研究[D]. 广州: 华南理工大学, 2016: 34−41.

    Liu H Y. Aqueous enzymatic extraction of moringa oleifera seed oil and antioxidant peptide simultaneously[D]. Guangzhou: South China University of Technology, 2016: 34−41.
  • Cited by

    Periodical cited type(9)

    1. 赵世光,储欣颖,黎玮,张宇,薛正莲. 混菌发酵茶籽抗氧化肽的分离纯化及其功能活性研究. 中国油脂. 2024(03): 87-93+110 .
    2. 孟烨,昝丽霞,张文夷,高宁,杜小平. 酶法制备植源性生物活性肽及其生理活性的研究进展. 农业技术与装备. 2024(03): 189-192 .
    3. 张宇,陈胜现,黎玮,李婷,张钰,赵世光. 微生物发酵法制备茶籽多肽及其功能活性研究. 安徽化工. 2024(02): 45-49+54 .
    4. 金丹莉,程逸潮,洪杏德,付晶晶,董秀萍,陈跃文. 橙足海参多肽的制备工艺优化及其抗氧化活性研究. 中国调味品. 2024(06): 22-30 .
    5. 陈巧玲,卢学慧,王弛,赵峰. 茶叶籽粕蛋白酶解物的抗氧化及抑制α-葡萄糖苷酶活性研究. 茶叶学报. 2024(02): 64-71 .
    6. 杨方慧,仝佳音,李晓静,王凯博,刘本英,邹茜. 优化古树秋茶干茶中粗蛋白的提取方法与实际应用. 食品工业. 2024(06): 153-157 .
    7. 王俊锋,连慧香,马艺培,刘英丽,刘佳. 茶多肽对哺乳母猪生产性能、血清生化指标及免疫和抗氧化性能的影响. 山东农业大学学报(自然科学版). 2023(01): 42-46 .
    8. 杨宝强,刘生杰. 响应面法优化猴头菇蛋白抗氧化肽工艺及抗运动疲劳活性研究. 粮食与油脂. 2023(05): 142-147 .
    9. 赵世光,谢东宝,储欣颖,张宇,胡子敏,葛礼涛,钱森和,魏明. 混菌发酵制备茶籽多肽及其抗氧化作用. 食品与发酵工业. 2022(06): 147-153 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (435) PDF downloads (59) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return