QUAN Haoyan, WANG Peng, WEI Zhengpeng, et al. Optimization of Fermentation Conditions and Enzymatic Characteristics of the Cholesterol Esterase from Pichia pastoris [J]. Science and Technology of Food Industry, 2021, 42(17): 94−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110102.
Citation: QUAN Haoyan, WANG Peng, WEI Zhengpeng, et al. Optimization of Fermentation Conditions and Enzymatic Characteristics of the Cholesterol Esterase from Pichia pastoris [J]. Science and Technology of Food Industry, 2021, 42(17): 94−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110102.

Optimization of Fermentation Conditions and Enzymatic Characteristics of the Cholesterol Esterase from Pichia pastoris

More Information
  • Received Date: November 10, 2020
  • Available Online: July 03, 2021
  • In order to achieve the high-efficiency fermentation of cholesterol esterase, Pichia pastoris was selected as the research object, and its fermentation conditions were optimized by single factor and orthogonal experiments. The results showed that the optimum medium was yeast extract 1.0%, peptone 1.5%, glycerin 1.0%, KH2PO4 1.18%, K2HPO4 0.3%, biotin 4×10-5%, YNB 1.34%. Under the condition of initial pH7.0, fermentation temperature 30 ℃, fermentation time 96 h, the enzyme activity could reach 11.21 U/mL. And it was 3.65 times higher than before. The results of enzymatic properties showed that the optimum pH and reaction temperature of the enzyme were 8.0 and 50 ℃, respectively. Zn2+ had a strong inhibition on the enzyme. The cholesterol esterase had stable enzymatic properties and could provide technical basis for large-scale production in the future.
  • [1]
    任楠楠, 王晓辉, 迟乃玉, 等. 微生物甾醇酯酶的研究进展[J]. 中国酿造,2017,36(6):9−13. [Ren N N, Wang X H, Chi N Y, et al. Research advance in sterol esterase from microorganisms[J]. China Brewing,2017,36(6):9−13. doi: 10.11882/j.issn.0254-5071.2017.06.002
    [2]
    Allain C C, Poon L S, Chan C S, et al. Enzymatic determination of total serum cholesterol[J]. Clinical Chemistry,1974,20(4):470−475. doi: 10.1093/clinchem/20.4.470
    [3]
    李玲. 内切纤维素酶与甾醇酯酶在毕赤酵母中的高效表达[D]. 广州: 华南理工大学, 2018.

    Li L. High expression of endocellulase and sterol esterase in Pichia pastoris[D]. GuangZhou: South China University of Technology, 2018.
    [4]
    Deykin D A, Goodman D V S. The hydrolysis of long-chain fatty acid esters of cholesterol with rat[J]. Journal of Biological Chemistry,1963,237:3649−3656.
    [5]
    Calame K B, Gallo L, Cheriathundam E, et al. Purification and properties of subunits of sterol ester hydrolase from rat pancreas[J]. Archives of Biochemistry and Biophysics,1975,168(1):57−65. doi: 10.1016/0003-9861(75)90227-1
    [6]
    Durham L A, Grogan W M. Temperature sensitivity of cholesteryl ester hydrolases in the rat testis[J]. Lipids,1982,17(12):970−975. doi: 10.1007/BF02534594
    [7]
    Du L, Huo Y, Ge F, et al. Purification and characterization of novel extracellular cholesterol esterase from Acinetobacter sp.[J]. Journal of Basic Microbiology,2010,50(Supplement 1):30−36.
    [8]
    Peters J, Onguri V, Nishimoto S K, et al. The Chlamydia trachomatis CT149 protein exhibits esterase activity in vitro and catalyzes cholesteryl ester hydrolysis when expressed in HeLa cells[J]. Microbes and Infection,2012,14(13):1196−1204. doi: 10.1016/j.micinf.2012.07.020
    [9]
    Vaquero M E, Prieto A, Barriuso J, et al. Expression and properties of three novel fungal lipases/sterol esterases predicted in silico: Comparison with other enzymes of the Candida rugosa-like family[J]. Applied Microbiology and Biotechnology,2015,99(23):10057−10067. doi: 10.1007/s00253-015-6890-9
    [10]
    Xiang H Y, Takaya N, Hoshino T. Novel cholesterol esterase secreted by Streptomyces persists during aqueous long-term storage[J]. Journal of Bioscience and Bioengineering,2006,101(1):19−25. doi: 10.1263/jbb.101.19
    [11]
    韩廷玉, 李盼盼, 刘春莹, 等. 莓实假单胞菌产低温胆固醇酯酶发酵条件优化[J]. 中国酿造,2020,39(8):47−53. [Han T Y, Li P P, Liu C Y, et al. Fermentation conditions optimization of Pseudomonas fragi for low temperature cholesterol esterase production[J]. China Brewing,2020,39(8):47−53. doi: 10.11882/j.issn.0254-5071.2020.08.010
    [12]
    孙柳青, 吴梦棋, 张玲, 等. Burkholderia cepacia中具有解脂作用的胆固醇酯酶的酶学特性[J]. 食品与发酵工业,2019,45(14):9−14. [Sun L Q, Wu M Q, Zhang L, et al. Characterization of cholesterol esterase with lipolytic activity from Burkholderia cepacia[J]. Food and Fermentation Industries,2019,45(14):9−14.
    [13]
    Dong H, Secundo F, Xue C H, et al. Whole-cell biocatalytic synthesis of cinnamyl acetate with a novel esterase from the DNA library of Acinetobacter hemolyticus[J]. Journal of Agricultural & Food Chemistry,2017,65(10):2120−2128.
    [14]
    李天阳. 抗菌肽CC31毕赤酵母工程菌制备与发酵参数优化的研究[D]. 大庆: 黑龙江八一农垦大学, 2019.

    Li T Y. Study on optimization of fermentation parameters in preparation of antimicrobial peptide CC31 in Pichia pastoris[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019.
    [15]
    徐珊, 李任强, 郑振华, 等. 红树林微生物DH-2胞外蛋白酶的性质及产酶条件优化[J]. 生物技术通报,2018,34(6):120−127. [Xu S, Li R H, Ren Z H, et al. Properties of extracellular protease of microbe DH-2 from mangrove and optimization of enzyme producing conditions[J]. Biotechnology Bulletin,2018,34(6):120−127.
    [16]
    司天昭, 柳陈坚, 秦晓萌, 等. 植物乳杆菌YM-2菌株胞外多糖生物合成工艺优化[J]. 食品科学,2017,38(10):24−30. [Si T Z, Liu C Z, Qin X M, et al. Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum YM-2[J]. Food Science,2017,38(10):24−30. doi: 10.7506/spkx1002-6630-201710005
    [17]
    任楠楠, 王晓辉, 迟乃玉, 等. 海洋低温甾醇酯酶菌株的筛选鉴定及其酶学特性研究[J]. 中国酿造,2019,38(1):37−41. [Ren N N, Wang X H, Chi N Y, et al. Screening and identification of a low temperature sterol esterase-producing strain from marine and its enzymatic properties[J]. China Brewing,2019,38(1):37−41. doi: 10.11882/j.issn.0254-5071.2019.01.008
    [18]
    陈媛, 贾斯斯, 胡露, 等. 食窦魏斯氏菌SJ-02产胞外多糖发酵工艺优化[J]. 食品与机械, 2018, 34(7): 194−199.

    Chen Y, Jia S S, Hu L, et al. Optimization of fermentation process for exopolysaccharides production of Weissella cibaria SJ-02[J].
    [19]
    战春君. 甘油抑制巴斯德毕赤酵母P_(AOX1)机制研究[D]. 无锡: 江南大学, 2018.

    Zhan C J. Mechanism of glycerol repression on P_(AOX1) in Pichia pastoris[D]. WuXi: Jiangnan University, 2018.
    [20]
    姜云芸, 蔡淼, 邵淑娟, 等. 植物乳杆菌K25发酵产胞外多糖的影响因素及其应用[J]. 食品科学技术学报,2018,36(1):25−34. [Jiang Y Y, Cai M, Shao S J, et al. Factors affecting of Lactobacillus plantarum K25 fermentation to produce exopolysaccharide and its application[J]. Journal of Food Science and Technology,2018,36(1):25−34. doi: 10.3969/j.issn.2095-6002.2018.01.004
    [21]
    Li Y P, Wang J, Yu Y, et al. Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera[J]. Carbohydrate Polymers,2013,98(1):988−994. doi: 10.1016/j.carbpol.2013.07.016
    [22]
    周丹. 来源于巧克力微杆菌重组酯酶的发酵优化、分子模拟及醛糖还原酶抑制剂的分子设计研究[D]. 上海: 上海应用技术大学, 2016.

    Zhou D. Fermentation optimization, molecular simulation of recombinant esterase from Microbacterium Chocolate and molecular design of the aldose reductase inhibitors[D]. ShangHai: Shanghai Institute of Technology, 2016.
    [23]
    Zaini N A M, Osman A, Hamid A A, et al. Purification and characterization of membrane-bound polyphenoloxidase (mPPO) from Snake fruit [Salacca zalacca (Gaertn.) Voss][J]. Food Chemistry,2013,136(2):407−414. doi: 10.1016/j.foodchem.2012.08.034
    [24]
    平芮巾, 孙谧, 刘均忠, 等. 产海洋细菌MP-2酯酶菌株的鉴定及酯酶理化性质的研究[J]. 渔业科学进展,2009,30(2):83−88. [Ping R J, Sun M, Liu J Z, et al. Identification of MP-2 esterase-producing marine Bacillus and study on properties of the esterase[J]. Progress in Fishery Sciences,2009,30(2):83−88. doi: 10.3969/j.issn.1000-7075.2009.02.014
    [25]
    覃拥灵, 何海燕, 陈桂光, 等. 裂褶菌(Schizophyllu. commune)酯酶的分离纯化及酶学性质研究[J]. 食品研究与开发, 2007, (8): 29−32.

    Tan Y L, He H Y, Chen G G, et al. Purification and properties of Schizophyllum commue esterase[J]. 2007 (8): 29−32.
  • Cited by

    Periodical cited type(26)

    1. 郭莉滨. “双碳”和“健康中国”背景下植物基肉制品的营养组分及健康功能性研究进展. 食品安全质量检测学报. 2025(03): 123-129 .
    2. 陈金换,安红周,孙嘉瑜,张皓冰,黄泽华. 植物蛋白的改性加工及热点应用领域研究进展. 粮油食品科技. 2025(02): 83-89 .
    3. 王庆沛,宇光海,廖爱美,潘龙,黄继红. 微生物合成血红蛋白的研究进展及其在食品中的应用. 中国调味品. 2024(01): 189-197 .
    4. 王彦丽,刘萌,朱来景,赵祥忠. 辣椒添加对植物蛋白肉感官特性的影响. 中国调味品. 2024(03): 28-32 .
    5. 刘静,金娜,石春芹,李永双,邓清升,罗旋飞,刘艳,杨宝君,聂龙. 响应面法优化豌豆蛋白植物肉配方及其体外消化分析. 食品工业科技. 2024(08): 216-226 . 本站查看
    6. 芦鑫,路风银,孙强,宋国辉,黄纪念. 植物蛋白肉感官品质与营养安全研究进展. 粮食与油脂. 2024(06): 6-10 .
    7. 俎新宇,赵亚男,王新新,杨进洁,边文洁,赵祥忠,梁艳. DHA藻油微胶囊粉对植物蛋白肉品质特性的影响. 食品研究与开发. 2024(14): 23-29 .
    8. 周鑫,马宁,王鑫,王恰,刘业学,田晓静,王稳航. 大豆组织蛋白发酵产品的体外消化特性. 食品研究与开发. 2024(17): 59-65 .
    9. 麻梦寒,冯朵,李梦洁,李琥,郭丽萍,王靖. 植物基食品加工技术、营养成分及其对不同人群的影响研究进展. 食品安全质量检测学报. 2024(18): 123-130 .
    10. 郭志伟,杨进洁,边文洁,赵祥忠,王晨莹. 酵母抽提物对植物蛋白肉品质的影响. 食品研究与开发. 2024(22): 9-14 .
    11. 葛志优,王羽,高艳娥,蔡维. 植物蛋白肉超声振动3D打印方法与试验. 农业工程学报. 2024(20): 259-268 .
    12. 王谊,陈志娜,尹琳琳,卞楠月,叶韬,陆剑锋. 豌豆蛋白粉添加量对低规格克氏原螯虾肉糜凝胶品质的影响. 廊坊师范学院学报(自然科学版). 2024(04): 56-62 .
    13. 刘萌,王聪睿,刘波,赵祥忠. 豇豆血红蛋白Lb Ⅱ在大肠杆菌中的重组表达条件优化、纯化与鉴定. 食品工业科技. 2023(04): 163-170 . 本站查看
    14. 樊炯,马骏骅,颜金鑫,张慧恩,杨华. 冷藏温度对植物基培根品质的影响. 食品与机械. 2023(05): 115-118+131 .
    15. 孙莹,王龙,朱秀清,江连洲. 植物基蛋白肉的研究现状与挑战. 食品工业科技. 2023(17): 438-446 . 本站查看
    16. 蔡维,王羽,高艳娥,李丽. 植物蛋白肉3D打印工艺参数优化. 农业工程学报. 2023(12): 254-264 .
    17. 刘浩栋,张金闯,陈琼玲,张玉洁,李同庆,王强. 植物基肉制品营养品质研究现状. 中国食品学报. 2023(08): 428-439 .
    18. 李振,相海,赵有斌,宋健宇,张德程,梁昊,张艺潇. 植物蛋白螺杆挤压组织化技术的研究进展. 中国油脂. 2023(09): 67-74 .
    19. 陶相锦,黄立强,王冬玲,马文平,马世岷. 植物蛋白肉生产的关键因素分析. 食品安全导刊. 2023(30): 160-162 .
    20. 佟宗航,李亚敏,高昂,谢赫然,高子凡,邢竹青. 植物蛋白肉产品品质评价及过敏原分析. 食品工业科技. 2022(04): 387-395 . 本站查看
    21. 臧学丽,黄志远,叶春民. 高斯软件模拟转谷氨酰胺酶交联大豆分离蛋白机理的研究. 高分子通报. 2022(10): 108-119 .
    22. 袁丽,孔云菲,贾世亮,石彤,励建荣,包玉龙,高瑞昌. 植物蛋白在动物肉糜类制品中的应用现状及研究进展. 肉类研究. 2022(10): 43-50 .
    23. 豆康宁,赵永敢,金少举,李超敏,邓同兴,赵志军. 植物基肉制品的研究进展. 食品与机械. 2022(11): 230-235 .
    24. 李家磊,管立军,高扬,严松,王崑仑,王春丽,李晓娟,卢淑雯,李波,周野. 液熏高水分挤压组织化植物蛋白加工工艺优化. 中国食品学报. 2022(11): 214-227 .
    25. 高智利,杨军飞. 植物蛋白肉的研究进展与发展趋势. 食品安全导刊. 2021(12): 184-186 .
    26. 周亚楠,王淑敏,马小清,缪松,卢旭. 植物基人造肉的营养特性与食用安全性. 食品安全质量检测学报. 2021(11): 4402-4410 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return