XU Ning, ZHAO Yuehan, HOU Zhaohua. Effect of Dry Methods on Differential Protein of Peony Peta Based on the Analysis of Label-Free Quantitative Proteomics [J]. Science and Technology of Food Industry, 2021, 42(9): 136−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110094.
Citation: XU Ning, ZHAO Yuehan, HOU Zhaohua. Effect of Dry Methods on Differential Protein of Peony Peta Based on the Analysis of Label-Free Quantitative Proteomics [J]. Science and Technology of Food Industry, 2021, 42(9): 136−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110094.

Effect of Dry Methods on Differential Protein of Peony Peta Based on the Analysis of Label-Free Quantitative Proteomics

More Information
  • Received Date: November 10, 2020
  • Available Online: March 15, 2021
  • In order to explore the protein differences of different processing methods at the protein level on peony petal(hot air drying, HD; natural drying, ZD; vacuum freeze drying, FD), and provide theoretical basis for subsequent processing, the proteomic differences of three kinds of processed peony petal were compared by label-free proteomics. The results showed that: A total of 1423 proteins were identified and 1349 proteins (94.80%)were quantified in the three groups. 1325, 677, and 1085 proteins were quantified in FD, HD and ZD respectively. There were 656 proteins in the three groups. Compared with HD, 77 differentially expressed proteins (DEPs) were detected in ZD, up-regulated 24 proteins, down-regulated 53 proteins. 77 DEPs annotation using GO and KEGG database revealed that proteins were enriched in glycolysis/gluconeogenesis pathway, pyruvate metabolism, TCA cycle, protein processing in endoplasmic reticulum. Conclusion: Processing methods had significant effect on protein difference of peony. This study is the first time to analyze the expression changes of differential proteins in peony flower by proteomics method, and provide scientific basis for different processing methods in practice.
  • [1]
    孙嘉怡. 牡丹花瓣精油化学成分及其抗氧化能力研究[D]. 杨凌: 西北农林科技大学, 2015.
    [2]
    董立媛, 王瑶, 宁杰, 等. 菏泽不同产地牡丹叶营养成分分析与评价[J]. 食品工业科技,2020,41(7):226−232.
    [3]
    田给林. 牡丹花茶的研制与开发[J]. 贵州农业科学,2013,41(10):172−175. doi: 10.3969/j.issn.1001-3601.2013.10.048
    [4]
    朱文学, 康帅飞, 邱园园. 牡丹花真空冷冻干燥及护色研究[J]. 农产品加工(学刊),2013(8):10−12.
    [5]
    康帅飞. 牡丹花干制护色护形研究[D]. 洛阳: 河南科技大学, 2013.
    [6]
    陈玲玲. 敖汉苜蓿小花与种子响应硼胁迫的蛋白质组学与代谢组学分析[D]. 北京: 中国农业大学, 2017.
    [7]
    周晓英. 应用非标记定量蛋白质组学技术筛选基质小泡矿化相关蛋白[D]. 济南: 济南大学, 2013.
    [8]
    李新明, 李群, 韩彦龙, 等. 苹果片在干制条件下的蛋白质组学分析[J]. 安徽农业科学,2018,46(2):70−74. doi: 10.3969/j.issn.0517-6611.2018.02.022
    [9]
    Maria Carolina Q, Thiago Falda L, Andressa Peres B, et al. Label-free quantitative proteomic analysis of Puccinia psidii uredospores reveals differences of fungal populations infecting eucalyptus and guava[J]. PLoS One,2016,11(1):1−19.
    [10]
    Li N, Zhang S, Liang Y J, et al. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes[J]. Journal of Proteomics,2018,172(1):122−142.
    [11]
    Chen S S, Ying Luo Y, Ding G D, et al. Comparative analysis of Brassica napus plasma membrane proteins under phosphorus deficiency using label-free and MaxQuant-based proteomics approaches[J]. Journal of Proteomics,2016,133(07):144−152.
    [12]
    Ning D L, Liu C C, Liu J W, et al. Label-free quantitative proteomics analysis of dormant terminal buds of poplar[J]. Molecular Biology Reports,2013,40(7):4529−4542. doi: 10.1007/s11033-013-2548-9
    [13]
    Soares E D A, Werth E G, Madroñero L J, et al. Label-free quantitative proteomic analysis of pre-flowering PMeV-infectedCarica papaya L.[J]. Journal of Proteomics,2017,151(1):275−283.
    [14]
    Shi F C, Yang X F, Zeng H M, et al. Label-free quantitative proteomic analysis revealed a positive effect of ectopic over-expression of PeaT1 fromAlternaria tenuissima on rice (Oryza sativa) response to drought[J]. 3 Biotech,2018,8(11):480. doi: 10.1007/s13205-018-1507-5
    [15]
    Gu X M, Xiao Q, Ruan Q, et al. Comparative untargeted proteomic analysis of ADME proteins and tumor antigens for tumor cell lines[J]. Acta Pharmaceutica Sinica B,2018,8(2):252−260. doi: 10.1016/j.apsb.2017.10.002
    [16]
    Sun Q Q, Zhang N, Wang J F, et al. A label-free differential proteomics analysis reveals the effect of melatonin in promoting fruitripening and anthocyanin accumulation upon post-harvest in tomatoes[J]. Journal of Pineal Research,2016,61(2):138−153. doi: 10.1111/jpi.12315
    [17]
    Wang C, Wang J, Wang X, et al. Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions[J]. Scientific reports,2017,7(1):10589. doi: 10.1038/s41598-017-10370-6
    [18]
    王颖, 田应金, 蒋伟, 等. 基于热图和聚类分析的马铃薯矿质元素含量评价[J]. 分子植物育种,2018(19):6483−6488.
    [19]
    许婷婷, 郭鹏, 张巍, 等. 基于液质联用蛋白质组学技术的阿尔茨海默病血清生物标志物及生物信息学研究[J]. 药学学报,2020,55(7):1604 −1613.
    [20]
    陈玲玲. 敖汉苜蓿小花与种子响应硼胁迫的蛋白质组学与代谢组学分析[D]. 北京: 中国农业大学, 2017.
    [21]
    宫慧. 涩柿果实采后脱涩过程无氧呼吸相关差异表达基因克隆及表达分析[D]. 杭州: 浙江大学, 2020.
    [22]
    任晓松, 王子沐, 焦健, 等. GA3处理对低温胁迫条件下玉米种子呼吸代谢的影响[J]. 生态学杂志,2020,39(3):847−854.
    [23]
    李听弦, 张志, 傅敏, 等. 基于能量代谢的姜黄连炮制机制初探[J].中草药, 2019, 50(23): 5785-5789.
    [24]
    唐利华. 光诱导香菇菌丝转色形成机理的研究[D]. 上海: 上海交通大学, 2013.
    [25]
    张恩平, 张淑红, Jan C, 等. 盐胁迫下不同盐敏感型番茄在蛋白质表达上的差异[J]. 沈阳农业大学学报,2005,36(1):25−28. doi: 10.3969/j.issn.1000-1700.2005.01.006
    [26]
    贾胜. 内源IAA对砀山酥梨幼果萼片发育的影响及EST文库建立[D]. 合肥: 安徽农业大学, 2013.
    [27]
    郝佳. 基于能量代谢的冷藏蓝莓果蒂凹陷机制及调控的研究[D]. 沈阳: 沈阳农业大学, 2019.
    [28]
    汤佳乐, 徐海, 苑平, 等. 植物Hsp90s与耐热性关系的研究进展[J]. 生物技术通报,2020,36(10):24−31.
    [29]
    丁伟. 水稻干旱胁迫蛋白质组相关数据和生物信息分析研究[D]. 武汉: 华中农业大学, 2009.
    [30]
    刘骕骦, 刘燕敏, 李阳. 植物热激蛋白在非生物胁迫响应中的研究进展[J].广东蚕业, 2020, 54(4): 25-26.
    [31]
    Zhang W T, Xi H. A label-free quantitative proteomic investigation reveals stage-responsive ripening genes in apricot fruits[J]. The Journal of Horticultural Science and Biotechnology,2017,92(3):261−269. doi: 10.1080/14620316.2016.1265469
  • Cited by

    Periodical cited type(14)

    1. 王佳,丁方莉,安宇,曾雪莹,张智慧,李思楠,徐开媛,周芳,王颖,张璐,徐炳政,孙泽堃. 芸豆-蓝靛果复合发酵液制备工艺优化及其抗氧化活性. 食品工业科技. 2025(03): 222-231 . 本站查看
    2. 李天昊,位绍文,毛伟健,姜秀兰,薛彦华,丁洪发,盖凌云,程凡升,徐海忠. 三种酶前处理对香蕉酵素理化性质、生物活性及感官的影响. 食品工业科技. 2024(07): 86-92 . 本站查看
    3. 白海军,庞惟俏,张智慧,王颖. 藜麦—蓝靛果复合汁发酵工艺及其上清液抗氧化与抗疲劳作用研究. 食品与机械. 2024(07): 148-154 .
    4. 陈雨欣,杨峰山,付海燕,宋新宇,刘春光. 食用植物酵素发酵过程中主要成分与功能研究进展. 中国农学通报. 2024(24): 143-150 .
    5. 孙茂成,王颖地,费鹏,昂媛,周铁莉,杨柳. 植物酵素的发酵微生物、加工技术及潜在生理功能. 中国调味品. 2024(11): 200-204 .
    6. 张智慧,庞惟俏,徐炳政,王颖,王佳,佐兆杭,孙维,徐开媛,李思楠. 藜麦和蓝靛果发酵菌株的筛选及复合发酵工艺的优化. 食品工业科技. 2024(24): 204-213 . 本站查看
    7. 刘倩,袁越,张杰,赵瑞丽,赵黎明. 不同菌种发酵对诺丽果酵素的抗氧化性及风味物质的影响. 食品工业科技. 2023(04): 129-137 . 本站查看
    8. 马天颖,蔡俊. 植物乳杆菌发酵马齿苋陈皮工艺优化及发酵液抗氧化活性分析. 食品研究与开发. 2023(08): 143-148 .
    9. 王虎玄,柯西娜,王聪,朱亚南,孙宏民. 苹果酵素的制备及其抗氧化功能研究. 陕西科技大学学报. 2023(03): 37-46 .
    10. 田文静,武亚帅,程雪华,马长路. 柿子酵素发酵过程中活性成分及其抗氧化性能的研究. 北京农业职业学院学报. 2023(04): 59-66 .
    11. 韩怀磊,李文,王陶,贺羽,杨太平,袁珍虎,石相弘. 枯草芽孢杆菌发酵复配饲料的抗氧化活性研究. 饲料研究. 2023(12): 71-76 .
    12. 李昕阳,王淑敏,冷悦,陆珠,王旭,王欢,陈长宝. 蜜环菌液体培养基配方优选及其活性成分和抗氧化活性研究. 食品安全质量检测学报. 2023(19): 272-279 .
    13. 吕铭守,高亦昕,石彦国,刘琳琳,孙冰玉,朱秀清. 响应面法优化杂豆酸豆乳发酵工艺及体外消化分析. 食品工业科技. 2022(10): 238-245 . 本站查看
    14. 王帅,宋奇,范影,冯超. 桑葚酵素发酵过程中理化指标及抗氧化活性的变化. 中国酿造. 2022(11): 84-88 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (244) PDF downloads (9) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return