Citation: | HUANG Jin, CUI Chaojing, HAN Xue, et al. Research Progress on Preparation, Characterization and Application of Polysaccharide Nanomaterials in Edible Coating of Fruits and Vegetables[J]. Science and Technology of Food Industry, 2021, 42(24): 424−433. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110068. |
[1] |
NISHANT K, NEERAJ. Polysaccharide-based component and their relevance in edible film/coating: A review[J]. Nutrition & Food Science,2019,49(5):793−823.
|
[2] |
王馨, 胡文忠, 陈晨, 等. 纳米材料在果蔬保鲜中的应用[J]. 食品与发酵工业,2017,43(1):281−286. [WANG X, HU W Z, CHEN C, et al. Application of nanomaterials in storage of fruits and vegetables[J]. Food and Fermentation Industries,2017,43(1):281−286.
|
[3] |
王雅立, 孙中琦, 庞杰. 纳米技术在食品科学中的应用研究[J]. 安徽农学通报,2014,20(10):20−22. [WANG Y L, SUN Z Q, PANG J. Research progress on application of nanotechnology in food science[J]. Anhui Agricultural Science Bulletin,2014,20(10):20−22.
|
[4] |
提伟钢, 于文越, 邵士凤, 等. 可食性涂膜保鲜技术研究进展[J]. 保鲜与加工,2013,13(2):49−52,57. [TI W G, YU W Y, SHAO S F, et al. Research progress of edible coating preservation technology[J]. Storage and Process,2013,13(2):49−52,57. doi: 10.3969/j.issn.1009-6221.2013.02.011
|
[5] |
王璐, 江英, 赵晓燕, 等. 壳聚糖涂膜保鲜心里美萝卜的研究[J]. 食品界,2016(4):140−142. [WANG L, JIANG Y, ZHAO X Y, et al. Study on preservation of Xinlimei radish with chitosan coating[J]. Food Industry,2016(4):140−142.
|
[6] |
NOEMI Z. Edible coatings to improve food quality and safety[M]. New York: Springer, 2010: 631-659.
|
[7] |
余易琳. 纳米纤维素/壳聚糖复合涂膜对柑橘的保鲜效果及涂膜制备与表征[D]. 重庆: 西南大学, 2020.
YU Y L. Study on the preserving effect of nanocrystal cellulose/chitosan composite coating on citrus and the preparation and characterization of coating film[D]. Chongqing: Southwest University, 2020.
|
[8] |
TAYEL A A, MOUSSA S H, SALEM M F, et al. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite[J]. 2016, 96(4): 1306-1312.
|
[9] |
罗雪云, 吴晓彤, 谢颖思, 等. 抗菌肽壳聚糖复合膜对水果黄瓜的保鲜作用[J]. 现代食品科技,2020,36(7):142−149,330. [LUO X Y, WU X T, XIE Y S, et al. Preservation of fruit cucumber treated by antibacterial peptide and chitosan composite film[J]. Modern Food Science and Technology,2020,36(7):142−149,330.
|
[10] |
ALAÍDES M B P, TALITA M S, CARLOS A C, et al. Starch-cashew tree gum nanocomposite films and their application for coating cashew nuts[J]. LWT-Food Science and Technology,2015,62(1):549−554. doi: 10.1016/j.lwt.2014.07.028
|
[11] |
GENEVOIS C E, PLA M F D E, FLORES S K. Application of edible coatings to improve global quality of fortified pumpkin[J]. Innovative Food Science & Emerging Technologies,2016,33(4):506−514.
|
[12] |
SREEDATH T, VISVANATHAN R, SYED S H R, et al. A biodegradable and edible packaging film based on papaya puree, gelatin, and defatted soy protein[J]. Food Packaging and Shelf Life,2016,10:60−71. doi: 10.1016/j.fpsl.2016.10.007
|
[13] |
OSORIO F A, MOLINA P, MATIACEVICH S, et al. Characteristics of hydroxy propyl methyl cellulose(HPMC) based edible film developed for blueberry coatings[J]. Procedia Food Science,2011,1(1):287−293.
|
[14] |
李晓宇, 杜小龙, 刘影, 等. 纳米TiO2/海藻酸钠复合涂膜对采后水蜜桃的保鲜效果[J]. 食品工业,2019,275(8):18−23. [LI X Y, DU X L, LIU Y, et al. The preservation effect of nano-TiO2/sodium alginate composite coating on postharvest peaches[J]. The Food Industry,2019,275(8):18−23.
|
[15] |
李浩祥, 倪学文, 徐玮键, 等. 魔芋葡甘聚糖/乙基纤维素复合膜对水果保鲜效果的影响[J]. 食品工业科技,2019,40(7):248−252. [LI H X, NI X W, XU Y J, et al. Effect of konjac glucomannan and ethyl cellulose blend films on fruits preservation[J]. Science and Technology of Food Industry,2019,40(7):248−252.
|
[16] |
JAYAKUMAR R, REIS R L, MANO J F. Chemistry and applications of phosphorylated chitin and chitosan[J]. E-Polymers,2013,6(1):447−462.
|
[17] |
谭啸, 邱婷婷, 李若男, 等. 壳聚糖纳米粒子的制备和在食品抑菌中的研究进展[J/OL]. 食品科学: 1-10[2020-10-04]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200330.1550.079.html.
TAN X, QIU T T, LI R N, et al. Recent progress in the preparation and application of chitosan nanoparticles as an antimicrobial in foods[J/OL]. Food Science: 1-10[2020-10-04]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200330.1550.079.html.
|
[18] |
PAN C L, QIAN J Q, FAN J, et al. Preparation nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2019,568:362−370.
|
[19] |
CHANG P R, JIAN R, YU J, et al. Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites[J]. Food Chemistry,2010,120(3):736−740. doi: 10.1016/j.foodchem.2009.11.002
|
[20] |
邓阳全, 邵丽, 杨银, 等. 乳化交联法在载药微球制备中的应用及研究进展[J]. 世界科技研究与发展,2009,31(1):36−39. [DENG Y Q, SHAO L, YANG Y, et al. Study on drug-carried microspheres prepared by emulsion cross-linking method[J]. World Sci-Tech Research and Development,2009,31(1):36−39. doi: 10.3969/j.issn.1006-6055.2009.01.008
|
[21] |
LALITA K, RANGRONG Y. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles[J]. Colloids Surf B Biointerfaces,2011,84(1):163−171. doi: 10.1016/j.colsurfb.2010.12.031
|
[22] |
费宏岩. 胰岛素/壳聚糖微球的制备及研究[D]. 哈尔滨: 哈尔滨理工大学, 2016.
FEI H Y. Preparation and research of insulin/chitosan microspheres[D]. Harbin: Harbin University of Science and Technology, 2016.
|
[23] |
LING W. Preparation method of nanocapsules from O/W microemulsion by using complex coacervation of chitosan and gelatin[J]. Pollution Control Technology, 2014.
|
[24] |
CHUANG C Y, DON T M, CHIU W Y. Preparation of environmental-responsive chitosan-based nanoparticles by self-assembly method[J]. Carbohydrate Polymers,2010,84(2):765−769.
|
[25] |
TAREQ F K, FAYZUNNESA M, KABIR M S, et al. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens[J]. Microbial Pathogenesis,2018,114:333−339. doi: 10.1016/j.micpath.2017.12.010
|
[26] |
BENJAMIN R R, BERND B, MIRZAYEVA A, et al. A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment[J]. Carbohydrate Polymers, 2018.
|
[27] |
CHLOÉ B A B, FABIEN S A B. Preparation of microcapsules by complex coacervation of gum arabic and chitosan[J]. Carbohydrate Polymers,2014,99(99):608−616.
|
[28] |
张茵, 孟晨, 常俊, 等. 自组装法制备茶多酚-明胶-壳聚糖纳米粒及其性质表征[J]. 中国药科大学学报,2014,45(2):178−184. [ZHANG Y, MENG C, CHANG J, et al. Preparation and characterization of a self-assembled tea polyphenol-gelatinchitosan nanoparticles[J]. Journal of China Pharmaceutical University,2014,45(2):178−184. doi: 10.11665/j.issn.1000-5048.20140209
|
[29] |
ZORMY N C, SILVIA B, MARGARITA L R, et al. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films[J]. Progress in Organic Coatings,2019,137:105326. doi: 10.1016/j.porgcoat.2019.105326
|
[30] |
MUSTAFA M A, ALI A, MANICKAM S. Application of a chitosan based nanoparticle formulation as an edible coating for tomatoes (Solanum lycoperiscum L.)[J]. Acta Horticulturae,2013(1012):445−452.
|
[31] |
ALI M, MARYAM H, SEYED M H. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber[J]. Innovative Food Science & Emerging Technologies,2016,33:580−588.
|
[32] |
GOMES L P, SOUZA H K S, CAMPIÑA J M, et al. Edible chitosan films and their nanosized counterparts exhibit antimicrobial activity and enhanced mechanical and barrier properties[J]. Molecules (Basel, Switzerland),2018,24(1):127. doi: 10.3390/molecules24010127
|
[33] |
SEYED F H, MASOUD R, MOJGAN Z, et al. Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles[J]. Food Hydrocolloids,2015,44:172−182. doi: 10.1016/j.foodhyd.2014.09.004
|
[34] |
童坤. 微乳液、纳米乳液的制备及应用性能研究[D]. 济南: 山东大学, 2016.
TONG K. Formation and application of microemulsions and nanoemulsions[D]. Jinan: Shandong University, 2016.
|
[35] |
周静峰, 罗海波, 王隽, 等. 纳米壳聚糖涂膜对鲜切茭白品质的影响[J]. 现代食品科技,2013,29(8):1883−1887,1804. [ZHOU J F, LUO H B, WANG J, et al. Effect of nano-chitosan coating on quality of fresh-cut Zizania latifolia[J]. Modern Food Science and Technology,2013,29(8):1883−1887,1804.
|
[36] |
ROGHAYEH K, MAHDI B, SARA D. Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus[J]. Lebensmittel-Wissenschaft und-Technologie/Food Science and Technology,2019,106:218−228. doi: 10.1016/j.lwt.2019.02.062
|
[37] |
FRANCESCO D, MARIANNA A, MARIAROSARIA V, et al. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier[J]. Journal of Biotechnology,2012,159(4):342−350. doi: 10.1016/j.jbiotec.2011.07.001
|
[38] |
ALBERTO J, MARIA J F, PAU T, et al. Edible and biodegradable starch films: A review[J]. Food & Bioprocess Technology,2012,5(6):2058−2076.
|
[39] |
AGNES R M, JOHN J M, ERIC O A. Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films[J]. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides,2017,165:142−148.
|
[40] |
EWELINA B, ANDRZEJ L, FREDERIC D. Effect of starch type on the physico-chemical properties of edible films[J]. International Journal of Biological Macromolecules,2017,98:348−356. doi: 10.1016/j.ijbiomac.2017.01.122
|
[41] |
DAI L, QIU C, XIONG L, et al. Characterisation of corn starch-based films reinforced with taro starch nanoparticles[J]. Food Chemistry,2015,174:82−88. doi: 10.1016/j.foodchem.2014.11.005
|
[42] |
KIZKITZA G, ALONA R, ALBA G, et al. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites[J]. Carbohydr Polym,2015,117:83−90. doi: 10.1016/j.carbpol.2014.09.055
|
[43] |
王超, 高海龙, 陈晓倩, 等. 纳米淀粉的制备与应用性能研究[J]. 齐鲁工业大学学报,2020,34(4):28−34. [WANG C, GAO H L, CHEN X Q, et al. Study on the preparation and application performance of nano starch[J]. Journal of Qilu University of Technology,2020,34(4):28−34.
|
[44] |
KIM H Y, PARK D J, KIM J Y, et al. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication[J]. Carbohydr Polym,2013,98(1):295−301. doi: 10.1016/j.carbpol.2013.05.085
|
[45] |
ALAIN D. Crystalline starch based nanoparticles[J]. Current Opinion in Colloid & Interface Science,2014,19(5):397−408.
|
[46] |
HAAJ S B, THIELEMANS W, MAGNIN A, et al. Starch nanocrystal stabilized pickering emulsion polymerization for nanocomposites with improved performance[J]. Acs Appl Mater Interfaces,2014,6(11):8263−8273. doi: 10.1021/am501077e
|
[47] |
JIANG S S, LIU C Z, HAN Z J, et al. Evaluation of rheological behavior of starch nanocrystals by acid hydrolysis and starch nanoparticles by self-assembly: A comparative study[J]. Food Hydrocolloids,2016,52:914−922. doi: 10.1016/j.foodhyd.2015.09.010
|
[48] |
AGUSTIN G, CECILIA I A I. Nanocrystal-reinforced soy protein films and their application as active packaging[J]. Food Hydrocolloids,2015,43:777−784. doi: 10.1016/j.foodhyd.2014.08.008
|
[49] |
ROY K, THORY R, SINHMAR A, et al. Development and characterization of nano starch-based composite films from mung bean (Vigna radiata)[J]. International Journal of Biological Macromolecules,2020,144:242−251. doi: 10.1016/j.ijbiomac.2019.12.113
|
[50] |
CORRE D L, ANGELLIER C H. Preparation and application of starch nanoparticles for nanocomposites: A review[J]. Reactive & Functional Polymers,2014,85:97−120.
|
[51] |
KIM H Y, PARK S S, LIM S K. Preparation, characterization and utilization of starch nanoparticles[J]. Colloids & Surfaces B Biointerfaces,2015,126:607−620.
|
[52] |
SHI A M, LI D, WANG L J, et al. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability[J]. Carbohydrate Polymers,2010,83(4):1604−1610.
|
[53] |
SIHEM B H, ALBERT M, CHRISTIAN P, et al. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers,2013,92(2):1625−1632. doi: 10.1016/j.carbpol.2012.11.022
|
[54] |
胡爱军, 张志华, 郑捷, 等. 大米纳米淀粉的超声法制备及载药性研究[J]. 粮食与饲料工业,2011(8):32−35. [HU A J, ZHANG Z H, ZHENG J, et al. Study on nano rice starch preparation by ultrasound and its drug loading capability[J]. Cereal and Feed Industry,2011(8):32−35. doi: 10.3969/j.issn.1003-6202.2011.08.010
|
[55] |
杨小云, 刘芙蓉, 陈晨, 等. 基于乳化交联法的油菜花粉淀粉微球制备[J]. 粮食与油脂,2019,32(11):7−10. [YANG X Y, LIU F R, CHEN C, et al. Preparation of rape pollen starch microspheres via emulsion-chemical cross-linking method[J]. Cereals and Oils,2019,32(11):7−10. doi: 10.3969/j.issn.1008-9578.2019.11.003
|
[56] |
彭晔. 芋头淀粉纳米颗粒的制备、酯化改性及其在润肤霜中的应用[D]. 合肥: 合肥工业大学, 2018.
PENG Y. The preparation esterification modification of Taro starch nanoparticles and its application in moisturizer[D]. Heifei: Hefei University of Technology, 2018.
|
[57] |
周雨佳, 肖茜, 邓放明. 纳米淀粉的制备及其在可食性薄膜中的应用研究进展[J]. 食品与机械,2016,32(9):229−232. [ZHOU Y J, XIAO Q, DENG F M. Research progress on preparation of nano-starch and its application in the preparation of edible films[J]. Food and Machinery,2016,32(9):229−232.
|
[58] |
LE C D, BRAS J, DUFRESNE A. Starch nanoparticles: A review[J]. Biomacromolecules,2010,11(5):1139. doi: 10.1021/bm901428y
|
[59] |
ZHOU G, LUO Z, FU X. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system[J]. Industrial Crops & Products,2014,52:105−110.
|
[60] |
吴修利. 玉米淀粉修饰及其纳米颗粒制备与表征[D]. 长春: 吉林大学, 2015.
WU X L. Modification of corn starch and preparation and characterization of nanoparticles[D]. Changchun: Jilin University, 2015.
|
[61] |
姬娜, 李广华, 马志超, 等. 生物酶法制备蜡质玉米淀粉纳米晶及其表征[J]. 中国粮油学报,2014,29(8):50−53. [JI N, LI G H, MA Z C, et al. Preparation of starch nanocrystals with glucoamylase and their characteristics[J]. Journal of the Chinese Cereals and Oils Association,2014,29(8):50−53.
|
[62] |
SHI A M, WANG L J, LI D, et al. Characterization of starch films containing starch nanoparticles: Part 1: Physical and mechanical properties[J]. Carbohydrate Polymers,2013,96(2):593−601. doi: 10.1016/j.carbpol.2012.12.042
|
[63] |
LI X J, QIU C, JI N, et al. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films[J]. Carbohydrate Polymers,2015,121:155−162. doi: 10.1016/j.carbpol.2014.12.040
|
[64] |
FLAVIA D M M. Cellulose and its derivatives use in the pharmaceutical compounding practice[M]. Cellulose-Medical, Pharmaceutical and Electronic, Applications, 2013.
|
[65] |
朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J/OL]. 中国造纸: 1−10[2020-10-04]. http://kns.cnki.net/kcms/detail/11.1967.TS.20200909.1622.020.html.
ZHU Y C, WU C J, YU D M, et al. Research status of nanocellulose preparation methods[J/OL]. China Pulp and Paper: 1−10[2020-10-04]. http://kns.cnki.net/kcms/detail/11.1967.TS.20200909.1622.020.html.
|
[66] |
董峰. 基于果蔬包装的纳米纤维素/壳聚糖复合膜的制备、性能及应用[D]. 哈尔滨: 东北林业大学, 2015.
DONG F. Preparation, property and application of nanocellulose/chitosan composite film based on fruit and vegetable package[D]. Harbin: Northeast Forestry University, 2015.
|
[67] |
KASIM M H, HAYDER H M, MOSA J M, et al. Hydrolysis of cellulose over silica-salicylaldehyde phenylhydrazone catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers,2015,46:74−81. doi: 10.1016/j.jtice.2014.09.005
|
[68] |
CHIMENTAO R J, LORENTE E, GISPERT G F, et al. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions[J]. Carbohydr Polym,2014,111:116−124. doi: 10.1016/j.carbpol.2014.04.001
|
[69] |
WANG Q Q, ZHU J Y, GLEISNER R, et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose,2012,19(5):1631−1643. doi: 10.1007/s10570-012-9745-x
|
[70] |
MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews,2011,40(7):3941−3994. doi: 10.1039/c0cs00108b
|
[71] |
GEORGE J, SAJEEVKUMAR V A, RAMANA K V, et al. Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles[J]. Journal of Materials Chemistry,2012:22.
|
[72] |
JOHNSY G, SIDDARAMAIAH. High performance edible nanocomposite films containing bacterial cellulose nanocrystals[J]. Carbohydrate Polymers,2012,87(3):2031−2037. doi: 10.1016/j.carbpol.2011.10.019
|
[73] |
刘子菲, 路苹, 高子乔, 等. 水解制备细菌纤维素纳米纤维及纳米纤维稳定的Pickering乳液特性[J]. 食品与发酵工业,2019,45(22):76−82. [LIU Z F, LU P, GAO Z Q, et al. Hydrolysis preparation of bacterial cellulose nanofibers and its characteristics of the pickering emulsions[J]. Food and Fermentation Industeries,2019,45(22):76−82.
|
[74] |
HUBBE M A, ANA F, PREETI T, et al. Nanocellulose in thin films, coatings, and plies for packaging applications: A review[J]. Bioresources,2017,12(1):2143−2233.
|
[75] |
卿彦, 蔡智勇, 吴义强, 等. 纤维素纳米纤丝研究进展[J]. 林业科学,2012(7):145−152. [QING Y, CAI Z Y, WU Y Q, et al. Study progress on cellulose nanofibril[J]. Scientia Silvae Sinicae,2012(7):145−152. doi: 10.11707/j.1001-7488.20120723
|
[76] |
汪丽粉, 李政, 贾士儒, 等. 细菌纤维素性质及应用的研究进展[J]. 微生物学通报,2014,41(8):1675−1683. [WANG L F, LI Z, JIA S R, et al. The research progress in characteristics and applications of bacterial cellulose[J]. Microbiology China,2014,41(8):1675−1683.
|
[77] |
QING Y, RONALD S, ZHU J Y, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches[J]. 2013, 97(1): 226-234.
|
[78] |
HUANG Y, GU C, HE S, et al. Development and characterization of an edible chitosan-whey protein nano composite film for chestnut(Castanea mollissima Bl. ) preservation[J]. Journal of Food Science,2020,85(7):2114−2123. doi: 10.1111/1750-3841.15174
|
[79] |
李保祥, 余易琳, 何悦, 等. 壳聚糖-纳米纤维素复合涂膜对沙糖桔贮藏保鲜效果的影响[J/OL]. 食品科学: 1−10[2021-01-15]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201207.1200.024.html.
LI B X, YU Y L, HE Y, et al. Effect of chitosan-nanocrystal cellulose composite coating on the preservation of Shatangju mandarin[J/OL]. Food Science: 1−10[2021-01-15]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201207.1200.024.html.
|
[80] |
DOGAN N, MCHUGH T H. Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films[J]. Journal of Food Science,2007,72(1):E016−E022.
|
[81] |
WANG X J, GUO C F, HAO W H, et al. Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose[J]. International Journal of Biological Macromolecules,2018:118.
|