Citation: | LIU Wanyue, LV Peixuan, YANG Yameng, et al. Preparation of Plant Functional Polypeptide and Its Application in Food[J]. Science and Technology of Food Industry, 2021, 42(24): 407−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110038. |
[1] |
郭蔚波, 赵燕, 徐明生, 等. 不同处理方式下蛋白质结构变化与体外消化性关系研究进展[J]. 食品科学,2019,40(1):327−333. [GUO W B, ZHAO Y, XU M S, et al. Research progress on the relationship between protein structure changes and in vitro digestibility under different treatments[J]. Food Science,2019,40(1):327−333. doi: 10.7506/spkx1002-6630-20180612-181
|
[2] |
MACKIE A. Insights and gaps on protein digestion[J]. Current Opinion in Food Science,2020,31:96−101. doi: 10.1016/j.cofs.2020.03.006
|
[3] |
李志豪, 周彬, 王萍, 等. 碱性电解水对籽瓜种仁蛋白质提取效果的影响[J]. 食品科学,2019,40(7):95−100. [LI Z H, ZHOU B, WANG P, et al. Effect of alkaline electrolyzed water on the extraction effect of seed melon protein[J]. Food Science,2019,40(7):95−100. doi: 10.7506/spkx1002-6630-20180315-197
|
[4] |
郭帅, 李艳. 椰子活性蛋白与功能肽的研究进展[J]. 食品科技,2018,43(5):67−71,76. [GUO S, LI Y. Research progress of coconut active protein and functional peptide[J]. Food Technology,2018,43(5):67−71,76.
|
[5] |
李欣蔚, 廖佳, 董秀瑜, 等. 功能性肽的分离及富集研究进展[J]. 食品科学,2020,41(1):267−276. [LI X W, LIAO J, DONG X Y, et al. Research progress on separation and enrichment of functional peptides[J]. Food Science,2020,41(1):267−276. doi: 10.7506/spkx1002-6630-20190629-413
|
[6] |
CHAUHAN V, KANWAR S S. Chapter 4-Bioactive peptides: Synthesis, functions and biotechnological applications[J]. Biotechnological Production of Bioactive Compounds,2020:107−137.
|
[7] |
LIU Q, KONG B, XIONG Y, et al. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis[J]. Food Chemistry,2010,118(2):403−410. doi: 10.1016/j.foodchem.2009.05.013
|
[8] |
BAUNE M C, SCHROEDER S, WITTE F, et al. Analysis of protein-network formation of different vegetable proteins during emulsification to produce solid fat substitutes[J]. Journal of Food Measurement and Characterization,2021:PP1−18.
|
[9] |
JIANG S, ZHANG K H, QING-LIN M A, et al. Preparation of plant antioxidant peptides by enzymatic hydrolysis and its application[J]. Cereal & Feed Industry, 2019.
|
[10] |
YAN Y, QIN L, GAO J, et al. Research progress of protein extraction technology from surplus sludge[J]. Environmental Engineering,2019,37(6):146−149,154.
|
[11] |
DING S, SUN Y, CHEN H, et al. An ultrasonic-ionic liquid process for the efficient acid catalyzed hydrolysis of feather keratin[J]. Chinese Journal of Chemical Engineering,2019:660−667.
|
[12] |
GAO M, HIRATA M, TOORISAKA E, et al. Acid-hydrolysis of fish wastes for lactic acid fermentation[J]. Bioresource Technology,2006,97(18):2414−2420. doi: 10.1016/j.biortech.2005.10.002
|
[13] |
KALAMBURA S, KRICKA T, KIS D, et al. High-risk bio-waste processing by alkaline hydrolysis and isolation of amino acids[J]. Tehnicki Vjesnik-Technical Gazette,2016,23(6):1771−1776.
|
[14] |
SUN X. Enzymatic hydrolysis of soy proteins and the hydrolysates utilisation[J]. International Journal of Food Science and Technology,2011,46(12):2447−2459. doi: 10.1111/j.1365-2621.2011.02785.x
|
[15] |
FRIEDMAN M, LEVIN C E, NOMA A T. Factors governing lysinoalanine formation in soy proteins[J]. Journal of Food Science,2006,49(5):1282−1288.
|
[16] |
KRISTINSSON H G. Aquatic food protein hydrolysates[J]. Maximising the Value of Marine By-Products,2007:229−248.
|
[17] |
SARMADI B H, ISMAIL A. Antioxidative peptides from food proteins: A review[J]. Peptides,2010,31(10):1949−1956. doi: 10.1016/j.peptides.2010.06.020
|
[18] |
TOLDRA F, REIG M, ARISTOY M C, et al. Generation of bioactive peptides during food processing[J]. Food Chemistry,2018,267:395−404. doi: 10.1016/j.foodchem.2017.06.119
|
[19] |
ASHAOLU T J. Antioxidative peptides derived from plants for human nutrition: Their production, mechanisms and applications[J]. European Food Research and Technology,2020,246(5):853−865. doi: 10.1007/s00217-020-03479-y
|
[20] |
ASHAOLU T J. Applications of soy protein hydrolysates in the emerging functional foods: A review[J]. International Journal of Food Science & Technology,2020,55(2):421−428.
|
[21] |
ZHAO X, HOU Y. Limited hydrolysis of soybean protein concentrate and isolate with two proteases and the impact on emulsifying activity index of hydrolysates, imag[J]. IEEE Transactions on Geoence & Remote Sensing,2009,8(14):3314−3319.
|
[22] |
SALAMPESSY J, REDDY N, KAILASAPATHY K, et al. Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins[J]. Journal of Functional Foods,2015,14:716−725. doi: 10.1016/j.jff.2015.02.037
|
[23] |
ELAVARASAN K, SHAMASUNDAR B A, BADII F, et al. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala)[J]. Food Chem,2016,206:210−216. doi: 10.1016/j.foodchem.2016.03.047
|
[24] |
ASHAOLU T J. Application of soy protein hydrolysates in the emerging functional foods: A review[J]. International Journal of Food Science and Technology,2019,55:421−428.
|
[25] |
MORA L, REIG M, TOLDRA F. Bioactive peptides generated from meat industry by-products[J]. Food Research International,2014,65(pt.c):344−349.
|
[26] |
FENG L, QIAO Y, ZOU Y, et al. Effect of flavourzyme on proteolysis, antioxidant capacity and sensory attributes of Chinese sausage[J]. Meat Science,2014,98(1):34−40. doi: 10.1016/j.meatsci.2014.04.001
|
[27] |
RIOS G M, BELLEVILLE M P, PAOLUCCI, et al. Progress in enzymatic membrane reactors-A review[J]. Journal of Membrane Science,2004,242(1−2):189−196. doi: 10.1016/j.memsci.2003.06.004
|
[28] |
WANG B, ATUNGULU G G, KHIR R, et al. Ultrasonic treatment effect on enzymolysis kinetics and activities of ACE-inhibitory peptides from oat-isolated protein[J]. Food Biophysics,2015,10(3):244−252. doi: 10.1007/s11483-014-9375-y
|
[29] |
GOVINDARAJU K, SRINIVAS H. Controlled enzymatic hydrolysis of glycinin: Susceptibility of acidic and basic subunits to proteolytic enzymes[J]. LWT-Food Science and Technology,2007,40(6):1056−1065. doi: 10.1016/j.lwt.2006.07.004
|
[30] |
TSUMURA K, SAITO T, KUGIMIYA W, et al. Selective proteolysis of the glycinin and β-conglycinin fractions in a soy protein isolate by pepsin and papain with controlled pH and temperature[J]. Journal of Food Science,2010,69(5):363−367.
|
[31] |
FERNANDEZ-ÁVILA C, ESCRIU R. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions[J]. Food Research International,2015,75:357−366. doi: 10.1016/j.foodres.2015.05.026
|
[32] |
ULUKO H, ZHANG S, LIU L, et al. Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates[J]. Journal of Functional Foods,2015,18:1138−1146. doi: 10.1016/j.jff.2014.11.024
|
[33] |
ZHOU C, HU J, YU X, et al. Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure[J]. Lwt-Food Science & Technology,2016,77:488−496.
|
[34] |
YANG X, LI Y, LI S, et al. Effects of low power density multi-frequency ultrasound pretreatment on the enzymolysis and the structure characterization of defatted wheat germ protein[J]. Ultrasonics Sonochemistry,2017,38:410−420. doi: 10.1016/j.ultsonch.2017.03.001
|
[35] |
ZHOU C, MA H, YU X, et al. Pretreatment of defatted wheat germ proteins (by-products of flour mill industry) using ultrasonic horn and bath reactors: Effect on structure and preparation of ACE-inhibitory peptides[J]. Ultrasonics Sonochemistry,2013,20(6):1390−1400. doi: 10.1016/j.ultsonch.2013.04.005
|
[36] |
JIA J, MA H, ZHAO W, et al. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein[J]. Food Chemistry,2010,119(1):336−342. doi: 10.1016/j.foodchem.2009.06.036
|
[37] |
YANG X, WANG L, ZHANG F, et al. Effects of multi-mode S-type ultrasound pretreatment on the preparation of ACE inhibitory peptide from rice protein[J]. Food Chemistry,2020:127216.
|
[38] |
LIU H L, HSIEH C M. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation[J]. Ultrasonics Sonochemistry,2009,16(3):431−438. doi: 10.1016/j.ultsonch.2008.08.009
|
[39] |
MOKHTAR D, HE R, MINTAH B, et al. Ultrasound pretreatment of sunflower protein: Impact on enzymolysis, ACE-inhibition activity, and structure characterization[J]. Journal of Food Processing and Preservation,2020,44(4):1−10.
|
[40] |
ZHANG Y, MA H, WANG B, et al. Effects of ultrasound pretreatment on the enzymolysis and structural characterization of wheat gluten[J]. Food Biophysics,2015,10(4):1−11.
|
[41] |
LIU R, HU A. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid[J]. Food Chemistry,2019,279:114−119. doi: 10.1016/j.foodchem.2018.11.147
|
[42] |
ZHANG C, ALASHI M, SINGH N, et al. Beef protein-derived peptides as bitter taste receptor T2R4 blockers[J]. Journal of Agricultural & Food Chemistry,2018,66(19):4902−4912.
|
[43] |
MURRAY T, BAKER B E. Studies on protein hydrolysis. I-preliminary observations on the taste of enzymic protein-hydrolysates[J]. Journal of the Science of Food and Agriculture,1952,3(10):470−475. doi: 10.1002/jsfa.2740031006
|
[44] |
MA W, GUO A, ZHANG Y, et al. A review on astringency and bitterness perception of tannins in wine[J]. Trends in Food Science and Technology,2014,40(1):6−19. doi: 10.1016/j.jpgs.2014.08.001
|
[45] |
MAEHASHI K, HUANG L. Bitter peptides and bitter taste receptors[J]. Cellular and Molecular Life Sciences,2009,66(10):1661−1671. doi: 10.1007/s00018-009-8755-9
|
[46] |
WEN Y, WANG E. A new frontier in soy bioactive peptides that may prevent age-related chronic diseases[J]. Comprehensive Reviews in Food Science and Food Safety,2005,4(4):63−78. doi: 10.1111/j.1541-4337.2005.tb00075.x
|
[47] |
MASAO F, MICHIKO Y, YUKIO O, et al. Diffusable bitter peptides in peptic hydrolyzate of soybean protein[J]. Agricultural and Biological Chemistry,1968,32(6):794−795. doi: 10.1080/00021369.1968.10859141
|
[48] |
KUKAAN I L, ZELENIK-BLATIK M, ABRAM V. Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A,1995,704(1):113−120. doi: 10.1016/0021-9673(95)00014-E
|
[49] |
KIM M R, CHOI S Y, KIM C S, et al. Amino acid sequence analysis of bitter peptides from a soybean proglycinin subunit synthesized in Escherichia coli[J]. Bioscience Biotechnology and Biochemistry,1999,63(12):2069−2074. doi: 10.1271/bbb.63.2069
|
[50] |
KIM I M, KAWAMURA Y, LEE C H. Isolation and identification of bitter peptides of tryptic hydrolysate of soybean 11S glycinin by reverse-phase high-performance liquid chromatography[J]. Journal of Food Science,2003,68(8):2416−2422. doi: 10.1111/j.1365-2621.2003.tb07039.x
|
[51] |
ARAI S, NOGUCHI M, KUROSAWA S, et al. Applying proteolytic enzymes on soybean. 6. deodorization effect of aspergillopeptidase a and debittering effect of aspergillus acid carboxypeptidase[J]. Food Science,1970,35(4):392−395. doi: 10.1111/j.1365-2621.1970.tb00940.x
|
[52] |
NEY K H. Bitterness of peptides: Amino acid composition and chain length[C]// Abstracts of Papers of the American Chemical Society, 1979, 115(6): 149−173.
|
[53] |
TANFORD C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins[J]. Journal of the American Chemical Society,1962,84(22):4240−4247. doi: 10.1021/ja00881a009
|
[54] |
RYDER K, BEKHIT E D, MCCONNELL M, et al. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases[J]. Food Chemistry,2016,208(Oct.1):42−50.
|
[55] |
MATAK K E, TAHERGORABI R, JACZYNSKI J. A review: Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods[J]. Food Research International,2015,77:697−703. doi: 10.1016/j.foodres.2015.05.048
|
[56] |
ARAI S, ABE M, YAMASHITA M, et al. Applying proteolytic enzymes on soybean. VIII. Formation of an indole derivative by condensation between tryptophan and n-hexanal[J]. Agricultural and Biological Chemistry,1971,35(4):552−559.
|
[57] |
钱方, 邓岩. 蛋白酶及其大豆蛋白水解物苦味的研究[J]. 大连工业大学学报,2000,19(3):182−186. [QIAN F, DENG Y. Study on the bitterness of protease and soy protein hydrolysate[J]. Journal of Dalian Polytechnic University,2000,19(3):182−186.
|
[58] |
尤莉蓉. 大豆肽运动补剂的研发及其促肌肉增长作用分析[J]. 食品研究与开发,2017,38(8):163−165. [YOU L R. Research and development of soy peptide sports supplement and analysis of its effect on promoting muscle growth[J]. Food Research and Development,2017,38(8):163−165. doi: 10.3969/j.issn.1005-6521.2017.08.038
|
[59] |
ZHANG Z, HE S, CAO X, et al. Potential prebiotic activities of soybean peptides maillard reaction products on modulating gut microbiota to alleviate aging-related disorders in D-galactose-induced ICR mice[J]. Journal of Functional Foods,2019(8):28−34.
|
[60] |
LIU J F, GU P, BERGMAN G, et al. Debittering effect of flavor enzyme and active carbon on the hydrolysate of soy protein isolate[J]. China Oils & Fats,2011,36(8):24−27.
|
[61] |
豆康宁, 孟宏昌, 翟天骄, 等. 乳酸菌发酵法改良大豆肽感官品质的研究[J]. 中国调味品,2018,43(2):72−75. [DOU K N, MENG H C, ZHAI T J, et al. Research on improving the sensory quality of soy peptides by lactic acid bacteria fermentation[J]. Chinese Condiments,2018,43(2):72−75. doi: 10.3969/j.issn.1000-9973.2018.02.016
|
[62] |
豆康宁. 微生物发酵法改良大豆肽风味[J]. 中国粮油学报,2018,33(2):31−35,66. [DOU K N. Improving the flavor of soybean peptides by microbial fermentation[J]. Journal of the Chinese Cereals and Oils Association,2018,33(2):31−35,66. doi: 10.3969/j.issn.1003-0174.2018.02.006
|
[63] |
李萍. 大豆肽脱苦及其生理功能的研究[D]. 济南: 济南大学, 2014.
LI P. Study on the debittering of soybean peptide and its physiological function[D]. Jinan: University of Jinan, 2014.
|
[64] |
ELFAHRI K R, VASILJEVIC T, YEAGER T, et al. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains[J]. Journal of Dairy Science,2016,99(1):31−40. doi: 10.3168/jds.2015-10160
|
[65] |
SAMURAILATPAM, SANJUKTA, AMIT, et al. Production of bioactive peptides during soybean fermentation and their potential health benefits[J]. Trends in Food Science & Technology,2016,50:1−10.
|
[66] |
RAI A K, KUMARI R, SANJUKTA S, et al. Production of bioactive protein hydrolysate using the yeasts isolated from soft chhurpi[J]. Bioresource Technology,2016:239−245.
|
[67] |
FITZGERALD R J, MURRAY B A. Bioactive peptides and lactic fermentations[J]. International Journal of Dairy Technology,2006,59(2):118−125. doi: 10.1111/j.1471-0307.2006.00250.x
|
[68] |
ASHAOLU T J. A review on selection of fermentative microorganisms for functional foods and beverages: The production and future perspectives[J]. International Journal of Food Science and Technology,2019,54(8):2511−2519. doi: 10.1111/ijfs.14181
|
[69] |
SINGH B P, VIJ S, HATI S. Functional significance of bioactive peptides derived from soybean[J]. Peptides,2014,54:171−179. doi: 10.1016/j.peptides.2014.01.022
|
[70] |
ASHAOLU T J, SAIBANDITH B, YUPANQUI C T, et al. Human colonic microbiota modulation and branched chain fatty acids production affected by soy protein hydrolysate[J]. International Journal of Food Science & Technology,2019,54(1):141−148.
|
[71] |
XU L, DU B, XU B. A systematic, comparative study on the benefificial health components and antioxidant activities of commercially fermented soy products marketed in China[J]. Food Chem,2015,174:202−213. doi: 10.1016/j.foodchem.2014.11.014
|
[72] |
KLEEKAYAI T, HARNEDY P A, O'KEEFFE M B, et al. Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes[J]. Food Chemistry,2015,176(Jun.1):441−447.
|
[73] |
MARCO M L, HEENEY D, BINDA S, et al. Health benefits of fermented foods: Microbiota and beyond[J]. Curr Opin Biotechnol,2017,44(Complete):94−102.
|
[74] |
FEKETE AGNES, GIVENS D, JULIE L. Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials[J]. Nutrients,2015,7(1):659−681. doi: 10.3390/nu7010659
|
[75] |
ISSOUFOU, AMADOU, GUO W, et al. Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum LP6[J]. International Journal of Food Properties,2011,14:654−665. doi: 10.1080/10942910903312502
|
[76] |
YAN S, LI Q, XUE X, et al. Analysis of improved nutritional composition of bee pollen (Brassica campestris L.) after different fermentation treatments[J]. International Journal of Food Science & Technology,2019,54(6):2169−2181.
|
[77] |
MEINLSCHMIDT P, UEBERHAM E, LEHMANN J, et al. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate[J]. Food Chemistry,2016,205(Aug.15):229−238.
|
[78] |
LIU H, ZHONG X, HUANG Y, et al. Production of free amino acid and short peptide fertilizer from rapeseed meal fermentation using Bacillus flexus NJNPD41 for promoting plant growth[J]. Pedosphere,2018,28(2):261−268. doi: 10.1016/S1002-0160(18)60012-8
|
[79] |
RUAN S, LUO J, LI Y, et al. Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis: Effects on peptides content, ACE inhibitory activity and biomass[J]. Process Biochemistry,2020,91:73−82. doi: 10.1016/j.procbio.2019.11.035
|
[80] |
ASHAOLU T J. Suppressive activity of enzymatically-educed soy protein hydrolysates on degranulation in IgE-antigen complex-stimulated RBL-2H3 cells[J]. Functional Foods in Health and Disease,2017,7(7):545−561. doi: 10.31989/ffhd.v7i7.356
|
[81] |
BOUTRIF E. Recent developments in protein quality evaluation[J]. Food Nutrition & Agriculture, 1991.
|
[82] |
SINGH B P, VIJ S. In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes[J]. LWT-Food Science and Technology,2018,91:303−307. doi: 10.1016/j.lwt.2018.01.066
|
[83] |
ASHAOLU T J. Protein hydrolysates and their impact on gut microbiota: An editorial[J]. CPQ Medicine,2019,5:1−5.
|
[84] |
ASHAOLU T J, YUPANQUI C T. Hypoallergenic and immunomodulatory prospects of pepsin-educed soy protein hydrolysates[J]. Journal of Food Science and Technology,2018,10:270−278.
|
[85] |
LOPES-DA-SILVA J A, MONTEIRO S R. Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide[J]. Food Chemistry,2019,294(Oct.1):216−223.
|
[86] |
HOU Y, ZHAO X H. Limited hydrolysis of two soybean protein products with trypsin or neutrase and the impacts on their solubility, gelation and fat absorption capacity[J]. Biotechnology,2011,10(2):190−196. doi: 10.3923/biotech.2011.190.196
|
[87] |
WOUTERS A G B, ROMBOUTS I, FIERENS E, et al. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems[J]. Comprehensive Reviews in Food ence & Food Safety,2016,15(4):786−800.
|
[88] |
KOTLAR C E, PONCE A G, ROURA S I, et al. Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically[J]. LWT-Food Science and Technology, 2013, 50: 378-385.
|
[89] |
CHEN Z, HUA P, ZHOU W, et al. Research progress of chelates of polypeptides and mineral elements[J]. Science and Technology of Food Industry,2017,38(8):350−355.
|
[90] |
SINGH G, MUTHUKUMARAPPAN K. Influence of calcium fortification on sensory, physical and rheological characteristics of fruit yogurt[J]. LWT-Food Science and Technology,2008,41(7):1145−1152. doi: 10.1016/j.lwt.2007.08.027
|
[91] |
WANG L, DING Y, ZHANG X, et al. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination[J]. Food Chemistry,2017,239(15):416−426.
|
[92] |
LIN Y, LIU Z, SHAN C, et al. Study on preparation and spectral analysis of iron chelated with soybean peptide[J]. Soybean Science,2017,36(1):108−115.
|
[93] |
SALGER M, STARK T D, HOFMANN T. Taste modulating peptides from overfermented cocoa beans[J]. Journal of Agricultural & Food Chemistry,2019,67(15):4311−4320.
|
[94] |
ROMÁN, SERGIO, SÁNCHEZ-SILES, et al. The importance of food naturalness for consumers: Results of a systematic review[J]. Trends in Food Science & Technology,2017,67:44−57.
|
[95] |
FESTRING D, HOFMANN T. Discovery of N2-(1-carboxyethyl)guanosine 5'-monophosphate as an umami-enhancing maillard-modified nucleotide in yeast extracts[J]. Journal of Agricultural & Food Chemistry,2010,58(19):10614−10622.
|
[96] |
KANEKO S, KUMAZAWA K, MASUDA H, et al. Molecular and sensory studies on the umami taste of Japanese green tea[J]. Journal of Agricultural & Food Chemistry,2006,54(7):2688−2694.
|
[97] |
BACKES M, OBST K, BOJAHR J, et al. Rubemamine and rubescenamine, two naturally occurring N-cinnamoyl phenethylamines with umami-taste-modulating properties[J]. Journal of Agricultural and Food Chemistry,2015,63:8694−8704. doi: 10.1021/acs.jafc.5b04402
|
[98] |
ERIC, FREROT, NATHALIE, et al. New umami amides: Structure-taste relationship studies of cinnamic acid derived amides and the natural occurrence of an intense umami amide in zanthoxylum piperitum[J]. Journal of Agricultural & Food Chemistry,2015,63:7161−7168.
|
[99] |
ZHANG L, PETERSON D G. Identification of a novel umami compound in potatoes and potato chips[J]. Food Chemistry,2017,240(Feb.1):1219−1226.
|
[100] |
SCHLICHTHERLE-CERNY H, AMADÒ, RENATO. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten[J]. Journal of Agricultural & Food Chemistry,2002,50(6):1515−1522.
|
[101] |
KANEKO S, KUMAZAWA K, NISHIMURA O. Isolation and identification of the umami enhancing compounds in Japanese soy sauce[J]. Bio Biotechnol Biochem,2011,75(7):1275−1282. doi: 10.1271/bbb.110041
|
[102] |
ARAI S, YAMASHITA M, FUJIMAKI M. Glutamyl oligopeptides as factors responsible for tastes of a proteinase-modified soybean protein[J]. Journal of the Agricultural Chemical Society of Japan,1972,36(7):1253−1256.
|
[103] |
ARAI S, YAMASHITA M, NOGUCHI M, et al. Tastes of L-glutamyl oligopeptides in relation to their chromatographic properties[J]. Agricultural and Biological Chemistry,1973,37(1):151−156. doi: 10.1080/00021369.1973.10860638
|
[104] |
DANG Y, GAO X, MA F, et al. Comparison of umami taste peptides in watersoluble extractions of Jinhua and Parma hams[J]. LWT-Food Science and Technology,2015,60:1179−1186. doi: 10.1016/j.lwt.2014.09.014
|
[105] |
SELAMASSAKUL O, LAOHAKUNJIT N, KERDCHOECHUEN O, et al. Bioactive peptides from brown rice protein hydrolyzed by bromelain: Relationship between biofunctional activities and flavor characteristics[J]. Journal of Food Science,2020,85(3):707−717. doi: 10.1111/1750-3841.15052
|
[106] |
ZHANG J, ZHAO M, SU G, et al. Identification and taste characteristics of novel umami and umami-enhancing peptides separated from peanut protein isolate hydrolysate by consecutive chromatography and UPLC-ESI-QTOF-MS/MS[J]. Food Chemistry,2019,278:674−682. doi: 10.1016/j.foodchem.2018.11.114
|
[107] |
CHEN K, CUI C. Preparation method of strong-flavor peptide in consomme soy sauce and application of flavor thickening peptide[P]. 2015.
|
[108] |
LIU T, HE T, ZHOU M, et al. Application of yeast extract and soybean flavor peptide in soy sauce[J]. China Condiment,2018,43(2):23−27.
|
[109] |
林萌莉, 王洁, 廖永红, 等. 炖煮鸡汤中多肽与鲜味构效关系[J]. 食品科学,2016,37(3):12−16. [LIN M L, WANG J, LIAO Y H, et al. Structure-activity relationship between peptides and umami in stewed chicken soup[J]. Food Science,2016,37(3):12−16. doi: 10.7506/spkx1002-6630-201603003
|
[110] |
KRISTINSSON H G, RASCO B A. Fish protein hydrolysates: Production, biochemical, and functional properties[J]. Critical Reviews in Food Science & Nutrition,2000,40(1):43−81.
|
[111] |
DAMODARAN S. Amino acids, peptides, and proteins[J]. Taunton Press,2008,35(18):8−91.
|
[112] |
DAMODARAN S. Protein stabilization of emulsions and foams[J]. Journal of Food Science,2010,70(3):R54−R66.
|
[113] |
PEARCE K N, KINSELLA J E. Emulsifying properties of proteins-evaluation of a turbidimetric technique[J]. Journal of Agriculture and Food Chemistry,1978,26(3):716−723. doi: 10.1021/jf60217a041
|
[114] |
Karefyllakis D, Octaviana H, Jan V, et al. The emulsifying performance of mildly derived mixtures from sunflower seeds[J]. Food Hydrocolloids,2019,88:75−85. doi: 10.1016/j.foodhyd.2018.09.037
|
[115] |
FERNANDEZ-AVILA C, TRUJILLO A J. Ultra-high pressure homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions[J]. Food Chemistry,2016,209:104−113. doi: 10.1016/j.foodchem.2016.04.019
|
[116] |
YANG H, LI X, GAO J, et al. Germination-assisted enzymatic hydrolysis can improve the quality of soybean protein[J]. Journal of Food Science,2017,82(8):1814−1819. doi: 10.1111/1750-3841.13782
|
[117] |
IMURA T, NAKAYAMA M, TAIRA T, et al. Interfacial and emulsifying properties of soybean peptides with different degrees of hydrolysis[J]. Journal of Oleo Science,2015,64(2):183−189. doi: 10.5650/jos.ess14167
|
[118] |
WIDYARANI, SARI Y W, RATNANINGSIH E, et al. Production of hydrophobic amino acids from biobased resources: Wheat gluten and rubber seed proteins[J]. Appl Microbiol Biotechnol,2016,100(18):7909−7920. doi: 10.1007/s00253-016-7441-8
|
[119] |
CHEN W, LIANG G, LI X, et al. Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability[J]. Colloids and Surfaces B: Biointerfaces,2019,177:550−558. doi: 10.1016/j.colsurfb.2019.02.020
|
[120] |
CHENG Y, CHEN J, XIONG Y L. Interfacial adsorption of peptides in oil-in-water emulsions costabilized by tween 20 and antioxidative potato peptides[J]. Journal of Agricultural and Food Chemistry,2014,62(47):11575−11581. doi: 10.1021/jf5038135
|
[121] |
周晓宏. 植物多肽: 万亿级产业蓄势待发[J]. 中国化工信息,2018,1351(13):34−35. [ZHOU X H. Plant peptides: Trillion-level industry is ready to take off[J]. China Chemical Information,2018,1351(13):34−35.
|