GUAN Baiting, LI Wei, ZHAO Fei, et al. Protective Effects of Giant Salamander Bioactive Peptides on D-galactose Induced Oxidative Damage in Mice[J]. Science and Technology of Food Industry, 2021, 42(16): 344−352. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110023.
Citation: GUAN Baiting, LI Wei, ZHAO Fei, et al. Protective Effects of Giant Salamander Bioactive Peptides on D-galactose Induced Oxidative Damage in Mice[J]. Science and Technology of Food Industry, 2021, 42(16): 344−352. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110023.

Protective Effects of Giant Salamander Bioactive Peptides on D-galactose Induced Oxidative Damage in Mice

More Information
  • Received Date: November 03, 2020
  • Available Online: June 20, 2021
  • To investigate anti-aging mechanism of giant salamander bioactive peptides, label-free quantitative (LFQ) proteomics was used after high-abundant proteins were removed. The results of LFQ showed 425 low-abundant proteins in serum in mice, in which 26 proteins were differentially expressed (P<0.05), and covered 14 biological processes, 6 molecular functions and 7 cellular components. Tetrahydrofolate synthase and glycogen phosphorylase were up-regulated expressed significantly (P<0.05), increased by 1.78 times and 1.05 times respectively, while xanthine dehydrogenase was down-regulated expressed significantly (P<0.05) decreased. The expression of these enzymes increased or decreased, which could reduce the amount of free radicals in vivo. In summary, the giant salamander bioactive peptides prevented aging by scavenging free radicals, this study would provide basic data for the use of the giant salamander bioactive peptides.
  • [1]
    罗庆华, 刘英, 张立云. 张家界市大鲵资源保护·增殖现状与对策[J]. 安徽农业科学,2009,.37(19):9023−9025, 9052.
    [2]
    李时珍. 本草纲目[M]. 北京: 人民卫生出版社, 2005.
    [3]
    谢宗万. 全国中草药汇编[M]. 北京: 人民卫生出版社, 1978.
    [4]
    李莉, 王锡昌, 刘源. 中国养殖大鲵的食用、药用价值及其开发利用研究进展[J]. 食品工业科技,2012,33(9):454−458.
    [5]
    纪钱萍, 李伟, 佟长青. 大鲵活性肽牡蛎多糖复合粉体外ACE抑制作用的研究[J]. 农产品加工,2020(20):29−31.
    [6]
    贺屹潮. 大鲵肉酶解肽制备及抗氧化与免疫调节活性研究[D]. 汉中: 陕西理工大学, 2020.
    [7]
    张佳婵, 王昌涛, 李萌, 等. 大鲵活性肽酶法制备工艺优化及抗氧化性分析[J]. 食品工业科技,2016,37(12):217−221, 242.
    [8]
    李素云, 王立芹, 郑稼琳, 等. 自由基与衰老的研究进展[J]. 中国老年学杂志, 2007, 27(20): 2046−2048.
    [9]
    王荣, 杨宽, 陈春妮, 等. 亚麻籽提取物对D-半乳糖致衰老小鼠的抗氧化保护机制研究[J]. 中国油脂,2019,44(8):92−95.
    [10]
    Qu Z, Zhang J, Yang H, et al. Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat[J]. Physiology & Behavior,2016,154:114−125.
    [11]
    Gao J, He H, Jiang W, et al. Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease[J]. Behavioural Brain Research,2015,293:27−33. doi: 10.1016/j.bbr.2015.06.045
    [12]
    王颖, 王欣卉, 徐炳政, 等. 芸豆芽菜多酚对D-半乳糖致小鼠机体氧化及肾脏损伤的修复作用[J]. 食品科学,2017,38(13):219−223. doi: 10.7506/spkx1002-6630-201713036
    [13]
    黄杰, 董照瀛, 许梦雄, 等. D-半乳糖致小鼠胰腺损伤[J]. 基础医学与临床,2017,37(7):912−917.
    [14]
    Gong Y-S, Guo J, Hu K, et al. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by d-galactose[J]. Experimental Gerontology,2016,74:21−28. doi: 10.1016/j.exger.2015.11.020
    [15]
    王爱萍, 史明仪, 费文勇, 等. 银杏外种皮内酯对D-半乳糖致脑衰老小鼠的作用[J]. 中国中医基础医学杂志,2005(3):189−191. doi: 10.3969/j.issn.1006-3250.2005.03.011
    [16]
    王文莉, 张伟, 于新莹, 等. 大鲵肉酶解产物的制备及其抗氧化性的研究[J]. 河北渔业,2012(9):1−4.
    [17]
    付静, 陈德经, 曹米娜. 大鲵多肽制备工艺的研究[J]. 食品科技,2012,37(2):66−68, 72.
    [18]
    Wiśniewski J R, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis[J]. Nature Methods,2009,6(5):359−362. doi: 10.1038/nmeth.1322
    [19]
    翟兴月, 王庆辉, 赵冠华, 等. 非标记定量蛋白质组方法分析鲟鱼肽抗D-半乳糖导致的小鼠衰老作用的研究[J]. 食品工业科技,2019,40(3):290−295.
    [20]
    Cox J, Hein M Y, Luber C A, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ[J]. Molecular & Cellular Proteomics,2014,13(9):2513−2526.
    [21]
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[J]. Nature Biotechnology,2008,26(12):1367−1372. doi: 10.1038/nbt.1511
    [22]
    Zhu Y, Xu H, Chen H, et al. Proteomic analysis of solid pseudopapillary tumor of the pancreas reveals dysfunction of the endoplasmic reticulum protein processing pathway[J]. Molecular & Cellular Proteomics,2014,13(10):2593−2603.
    [23]
    Gotz S, Garcia-Gomez J M, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research,2008,36(10):3420−3435. doi: 10.1093/nar/gkn176
    [24]
    Moriya Y, Itoh M, Okuda S, et al. KAAS: An automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research,2007,35(Web Server issue):W182−W185.
    [25]
    车晓宁. 有氧运动对衰老的大鼠脑组织抗氧化蛋白的影响[J]. 职业与健康,2014,30(13):1782−1784.
    [26]
    韦忠建, 陆碧琼, 胡江平. 不同负荷的间歇性游泳运动对衰老小鼠腓肠肌丙二醛含量和超氧化物歧化酶活性的影响[J]. 中国老年学杂志,2019,39(15):3781−3783. doi: 10.3969/j.issn.1005-9202.2019.15.057
    [27]
    Chen M, Zhai J, Liu Y, et al. Molecular cloning and characterization of C1 tetrahydrofolate (C1-THF) synthase in Bombyx mori, silkworm[J]. Gene,2018,663:25−33. doi: 10.1016/j.gene.2018.04.037
    [28]
    Bai Y, Li X, Zhang D, et al. Effects of phosphorylation on the activity of glycogen phosphorylase in mutton during incubation at 4 degrees C in vitro[J]. Food Chemistry,2020,313:126162. doi: 10.1016/j.foodchem.2020.126162
    [29]
    Chen Y, Li Yan, Chao H, et al. Molecular cloning and characterisation of a novel xanthine oxidase from Cellulosimicrobium cellulans ATCC21606[J]. Process Biochemistry,2020,91:65−72. doi: 10.1016/j.procbio.2019.11.033
    [30]
    Al-Shehri S S, Duley J A, Bansal N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles[J]. Redox Biology,2020,34:101524. doi: 10.1016/j.redox.2020.101524
    [31]
    Monika, Sharma N K, Thakur N, et al. Xanthine oxidase of Acinetobacter calcoaceticus RL2-M4: Production, purification and characterization[J]. Protein Expression and Purification,2019,160:36−44. doi: 10.1016/j.pep.2019.03.014
  • Cited by

    Periodical cited type(7)

    1. 曾璐瑶,劳梦甜,王海滨,王琦,彭利娟,路洪艳,黄锦荣. 复配保鲜剂对冷藏加州鲈鱼片品质特性的影响. 食品工业科技. 2024(16): 328-339 . 本站查看
    2. 吴晓龙,涂宗财,胡月明,王旭梅,王辉. 不同高温处理方式对草鱼肉理化性质及滋味品质的影响. 食品工业科技. 2024(19): 84-93 . 本站查看
    3. 陈泳琪,柴向华,吴克刚,段雪娟,李慧怡,张潼,邹冬锌. 香辛料精油结合真空包装对草鱼肉的低温保鲜研究. 食品与发酵工业. 2024(18): 233-239 .
    4. 赵佳莹,唐善虎,李思宁,陈腊梅,李巧艳. 香蕉花提取物对牦牛肉自然发酵香肠蛋白质氧化的影响. 食品科学. 2023(10): 90-99 .
    5. 刘裕,徐佳美,李金玲,李鹏鹏,马晶晶,耿志明,王道营,徐为民. 传统咸肉加工过程中羟基十八碳二烯酸的变化及其与脂肪氧化的关系. 食品工业科技. 2023(13): 79-84 . 本站查看
    6. 潘创,马静蓉,李亚会,杨贤庆. 水产品低温保藏过程中色泽劣化及护色的研究. 食品与发酵工业. 2023(12): 301-308 .
    7. 贾俊琦,张悦,林慧敏,张宾. 2种乌贼冻藏期间品质及肌原纤维蛋白功能特性变化. 食品工业科技. 2023(20): 380-388 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (320) PDF downloads (29) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return