DAI Yiqiang, LIU Xiaoli, WU Han, et al. Effects of Different Coagulants on Intermolecular Forces and Secondary Structure of Soybean Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(12): 89−94. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020110009.
Citation: DAI Yiqiang, LIU Xiaoli, WU Han, et al. Effects of Different Coagulants on Intermolecular Forces and Secondary Structure of Soybean Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(12): 89−94. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020110009.

Effects of Different Coagulants on Intermolecular Forces and Secondary Structure of Soybean Protein Isolate

More Information
  • Received Date: November 02, 2020
  • Available Online: April 12, 2021
  • To study the changes of intermolecular forces and secondary structure of soy protein induced by MgCl2, CaSO4, lactic acid, acetic acid, GDL and fermented soy whey, the effects of different coagulants on the pH value, surface hydrophobicity, free sulfhydryl group (SH), Zeta potential, α-helix, β-sheet, β-turn and random coil during SPI tofu processing were analyzed, while the SPI was used as the research object. Both salt coagulants and acid coagulants could reduce the pH values of SPI solution, and the final pH value was 6.08~6.14 and 5.25~5.58, respectively. Compared with heated SPI solution without coagulant, the addition of coagulants caused increases in the surface hydrophobicity and free SH content, and a decrease in Zeta potential in SPI solution. The surface hydrophobicity of SPI induced by coagulants increased first and then decreased, and free SH content decreased at 0~45 min. The Zeta potential of SPI solution added with fermented soy whey was significantly higher than that of other coagulants (P<0.05), ranging from 9.19 mV to 9.90 mV. In addition, salt coagulants induced a shift of α-helix and β-turn into β-sheet of soy proteins, and acid coagulants destroyed β-sheet of SPI. In particular, the SPI added with fermented soy whey had α-helix ratio between lactic acid and salt coagulants, and β-turn ratio between lactic acid and acetic acid.
  • [1]
    贺云. 豆腐酸浆中乳酸菌的分离鉴定及其在酸浆豆腐中的应用[D]. 无锡: 江南大学, 2018: 1−2.
    [2]
    Chang K L B, Lin Y S, Chen R H. The effect of chitosan on the gel properties of tofu (soybean curd)[J]. Journal of Food Engineering,2003,57(4):315−319. doi: 10.1016/S0260-8774(02)00345-X
    [3]
    Lee C H, Rha C. Microstructure of soybean aggregates and its relation to the physical and textural properties of the curd[J]. Journal of Food Science,1978,43(6):79−84. doi: 10.1111/j.1365-2621.1978.tb09740.x
    [4]
    Lu X, Lu Z, Yin L, et al. Effect of preheating temperature and calcium ions on the properties of cold-set soybean protein gel[J]. Food Research International,2010,43:1673−1683. doi: 10.1016/j.foodres.2010.05.011
    [5]
    王旭峰. CaSO4诱导大豆分离蛋白乳状液凝胶性质影响因素的研究[D]. 无锡: 江南大学, 2017: 4−5.
    [6]
    王宸之, 陈宇, 万重, 等. 豆腐凝胶成型机理研究进展[J]. 东北农业大学学报,2017,48(10):88−96. doi: 10.3969/j.issn.1005-9369.2017.10.011
    [7]
    Schuldt S, Raak N, Jaros D, et al. Acid-induced formation of soy protein gels in the presence of NaCl[J]. LWT - Food Science and Technology,2014,57(2):634−639. doi: 10.1016/j.lwt.2014.02.013
    [8]
    Chen N, Zhao M, Sun W, et al. Effect of oxidation on the emulsifying properties of soy protein isolate[J]. Food research international,2013,52(1):26−32. doi: 10.1016/j.foodres.2013.02.028
    [9]
    Shigeru H, Shuryo N. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J]. Journal of Food Science,1985,50:486−491.
    [10]
    Zhang M, Wang P, Zou M, et al. Microbial transglutaminase-modified protein network and its importance in enhancing the quality of high-fiber tofu with okara[J]. Food Chemistry,2019,289:169−176. doi: 10.1016/j.foodchem.2019.03.038
    [11]
    Liang X, Ma C, Yan X, et al. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions[J]. Food Hydrocolloids,2020,102:105569. doi: 10.1016/j.foodhyd.2019.105569
    [12]
    Cao F, Li X, Luo S, et al. Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu[J]. LWT - Food Science and Technology,2017,85:58−65. doi: 10.1016/j.lwt.2017.07.005
    [13]
    Liu Z, Chang S. Effect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu[J]. Journal of Agricultural and Food Chemistry, 2004, 52(11): 3405−3411.
    [14]
    Hsia S, Hsiao Y, Li W, et al. Aggregation of soy protein isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk[J]. Scientific Reports,2016,6(1):35718. doi: 10.1038/srep35718
    [15]
    赵海波. 硫酸钙诱导热变性大豆蛋白凝胶的影响因素及应用研究[D]. 无锡: 江南大学, 2017: 1−6.
    [16]
    Hu H, Li-Chen E C Y, Wan L, et al. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate[J]. Food Hydrocolloids,2013,32(2):303−311. doi: 10.1016/j.foodhyd.2013.01.016
    [17]
    Chen J, Sun Y. Modeling of the salt effects on hydrophobic adsorption equilibrium of protein[J]. Journal of Chromatography A,2003,992(1-2):29−40. doi: 10.1016/S0021-9673(03)00277-2
    [18]
    Haskard C A, Li-Chen E C Y. Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes[J]. Journal of Agricultural and Food Chemistry,1998,46(7):2671−2677. doi: 10.1021/jf970876y
    [19]
    Greene F C. Interactions of anionic and cationic fluorescent probes with proteins: The effect of charge[J]. Journal of Protein Chemistry,1984,3:167−180. doi: 10.1007/BF01040498
    [20]
    Zhao J, Dong F, Li Y, et al. Effect of freeze–thaw cycles on the emulsion activity and structural characteristics of soy protein isolate[J]. Process Biochemistry,2015,50(2):1607−1613. doi: 10.1016/j.procbio.2015.06.021
    [21]
    Kohyama K, Sano Y, Doi E. Rheological characteristics and gelation mechanism of tofu (Soybean Curd)[J]. Journal of Agricultural and Food Chemistry,1995,43(10):1808−1812. doi: 10.1021/jf00055a011
    [22]
    李传运. 酶处理对大豆蛋白凝胶性的影响研究[D]. 合肥: 合肥工业大学, 2019: 1-2.
    [23]
    左锋. 微压煮浆对豆乳蛋白粒子形成及其加工特性的影响机制研究[D]. 北京: 中国农业大学, 2016: 17-18.
    [24]
    Ryan K N, Zhong Q, Foegeding E A. Use of whey protein soluble aggregates for thermal stability-a hypothesis paper[J]. Journal of Food Science,2013,78(8):R1105−1115. doi: 10.1111/1750-3841.12207
    [25]
    Akbari A, Wu J. Cruciferin nanoparticles: Preparation, characterization and their potential application in delivery of bioactive compounds[J]. Food Hydrocolloids,2016,54:107−118. doi: 10.1016/j.foodhyd.2015.09.017
    [26]
    Li C, Rui X, Zhang Y, et al. Production of tofu by lactic acid bacteria isolated from naturally fermented soy whey and evaluation of its quality[J]. LWT-Food Science and Technology,2017,82:227−234. doi: 10.1016/j.lwt.2017.04.054
    [27]
    杨芳. 豆腐凝胶形成机理及水分状态与品质关系研究[D]. 武汉: 华中农业大学, 2009: 34-37.
    [28]
    Qiao Z, Chen X, Cheng Y, et al. Microbiological and chemical changes during the production of acidic whey, a traditional chinese tofu-coagulant[J]. International Journal of Food Properties, 2010, 13(1): 90−104.
    [29]
    Liu R, Zhao S M, Xiong S B, et al. Role of secondary structures in the gelation of porcine myosin at different pH values[J]. Meat Science,2008,80(3):632−639. doi: 10.1016/j.meatsci.2008.02.014
    [30]
    杨岚. 热处理强度对大豆蛋白凝胶性质的影响及机制初探[D]. 无锡: 江南大学, 2018: 18-23.
    [31]
    Utsumi S, Damodaran S, Kinsella J. Heat-induced interactions between soybean proteins: Preferential association of 11S basic subunits and. beta. subunits of 7S[J]. Journal of Agricultural and Food Chemistry, 1984, 32(6): 1406-1412.
    [32]
    HerreroA, Jiménez-Colmenero F, Carmona P. Elucidation of structural changes in soy protein isolate upon heating by Raman spectroscopy[J]. International Journal of Food Science & Technology, 2009, 44: 711−717.
  • Cited by

    Periodical cited type(11)

    1. 姜坤,李玉国,张道志,徐恒伟,冯丹萍,孟小茜,郑春英. 微生物发酵对刺五加叶黄酮类成分生物合成的影响. 中国农学通报. 2024(03): 145-151 .
    2. 陆少君,蔡肇栩,郭瑞雪,谢群巧,罗力,唐春萍,陈文健,江涛. 基于TLR-4/NF-κB信号通路探究金花茶提取物对非酒精性脂肪肝的作用. 食品工业科技. 2024(20): 349-360 . 本站查看
    3. 周月,王一珈,臧健,高英旭,潘丰,郭志富,李胤之. 刺五加活性成分及药用价值研究进展. 辽宁林业科技. 2024(06): 48-50+71 .
    4. 何嘉伟,江汉美,黄振阳,曾格格,戴全武,刘天琪,韩蔓. HS-SPME-GC-MS结合化学计量法分析刺五加不同部位的挥发性成分. 南京中医药大学学报. 2023(02): 146-156 .
    5. 李强,袁勇,李玉,于建海. 刺五加多糖对奶牛生产性能、抗氧化指标及免疫功能的影响. 中国饲料. 2023(12): 28-31 .
    6. 丁思宇,张道涵,韩丽琴. 星点-响应面法优化刺五加根黄酮闪式提取工艺研究. 吉林医药学院学报. 2023(04): 269-271 .
    7. 孙琳,井长欣,邹睿,辛宇,张晓旭,邱智东,王伟楠. 刺五加-灵芝双向固体发酵工艺优化及抗氧化活性评价. 科学技术与工程. 2023(21): 9004-9014 .
    8. 李强,张若冰,杨玉赫,田冰,李文兰,李陈雪. 刺五加叶化学成分及药理作用研究进展. 药学研究. 2023(07): 495-501 .
    9. 石玉璞,牛思思,韩璐瑶,李莞颖,余君伟,武冰辉,徐波,张艳萍,曹艳,乔长晟. 枸杞刺梨复合饮料的工艺优化及其降血糖性能. 食品研究与开发. 2023(18): 149-157 .
    10. 茆鑫,郑剑斌,李广耀,曲敏,郑心琪. 响应曲面法优化刺五加-五味子混菌发酵工艺的研究. 食品科技. 2023(09): 57-64 .
    11. 戴丛书,柴晶美,林长青. 金银花黄酮提取物的降血糖作用. 食品工业科技. 2022(24): 386-393 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (543) PDF downloads (52) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return