LIU Xin, CHEN Xiangyu, GUO Rui, et al. Process Optimization of Ultrasound-assisted Enzyme Extraction of Biluochun Polysaccharide and Its Separation, Purification and Property Analysis[J]. Science and Technology of Food Industry, 2021, 42(16): 138−146. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110007.
Citation: LIU Xin, CHEN Xiangyu, GUO Rui, et al. Process Optimization of Ultrasound-assisted Enzyme Extraction of Biluochun Polysaccharide and Its Separation, Purification and Property Analysis[J]. Science and Technology of Food Industry, 2021, 42(16): 138−146. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110007.

Process Optimization of Ultrasound-assisted Enzyme Extraction of Biluochun Polysaccharide and Its Separation, Purification and Property Analysis

More Information
  • Received Date: November 02, 2020
  • Available Online: June 14, 2021
  • After the compound enzymatic hydrolysis of Biluochun tea powder, the ultrasonic-assisted extraction process of Biluochun polysaccharide (BTP) was optimized by response surface experiment. The anion column and gel column were used for separation and purification. The physicochemical composition, functional group composition, relative molecular mass and molecular conformation of each component were determined by Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectrum scanning and high performance volume exclusion chromatography (HPSEC). The experiments showed that the best extraction process was ultrasonic power 200 W, ultrasonic temperature 45 ℃, material-to-liquid ratio 40:1 mL/g, ultrasonic time 35 min, and the yield of Biluochun polysaccharides was 26.74%. BTPA1 was obtained from BTP by DEAE-Sepharose anion exchange column chromatography, and BTPA1 was separated by Sepharose CL-6B gel column chromatography to obtain BTPA11 and BTPA12. The neutral sugar content of BTP, BTPA1, BTPA11 and BTPA12 were 59.39%, 66.86%, 77.43% and 62.61%, and the uronic acid content was 51.06%, 53.53%, 54.45% and 65.39%, respectively. After spectral and relative molecular mass analysis, the four Biluochun polysaccharide components all contained acid sugars and pyran ring structures; BTPA11 and BTPA12 were polysaccharides with uniform relative molecular mass distribution, and their relative molecular masses were 1604.2 kDa and 353.7 kDa; The slopes of the configuration of BTPA11 and BTPA12 were 0.12 and 0.15, and both might be high-branched spherical structures. The ultrasound-assisted enzyme extraction of Biluochun polysaccharide had a higher yield, and the analysis of the properties of each component would facilitate the study of fine structure and the development and utilization of active functions.
  • [1]
    Cai W, Xie L, Chen Y, et al. Purification, characterization and anticoagulant activity of the polysaccharides from green tea[J]. Carbohydrate Polymers,2013,92(2):1086−1090. doi: 10.1016/j.carbpol.2012.10.057
    [2]
    Wang Y, Li Y, Liu Y, et al. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides[J]. International Journal of Biological Macromolecules,2015,77:76−84. doi: 10.1016/j.ijbiomac.2015.02.052
    [3]
    Wang H, Shi S, Bao B, et al. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect[J]. Carbohydrate Polymers,2015,124:98−108. doi: 10.1016/j.carbpol.2015.01.070
    [4]
    Yang K, Li Y W, Gao Z Y, et al. MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea(Camellia sinensis) on their expression[J]. International Journal of Biological Macromolecules,2019,125:557−565. doi: 10.1016/j.ijbiomac.2018.12.088
    [5]
    Zhu J, Chen Z, Chen L, et al. Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea[J]. International Journal of Biological Macromolecules,2019,130:388−398. doi: 10.1016/j.ijbiomac.2019.02.102
    [6]
    Zhou X, Wang D, Sun P, et al. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice[J]. Journal of Agricultural and Food Chemistry,2007,55(14):5523−5528. doi: 10.1021/jf070699t
    [7]
    Zhang J, Wen C, Qin W, et al. Ultrasonic-enhanced subcritical water extraction of polysaccharides by two steps and its characterization from Lentinus edodes[J]. International Journal of Biological Macromolecules,2018,118:2269−2277. doi: 10.1016/j.ijbiomac.2018.07.098
    [8]
    Chen G, Fang C, Ran C, et al. Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[J]. International Journal of Biological Macromolecules,2019,130:903−914. doi: 10.1016/j.ijbiomac.2019.03.038
    [9]
    Chen G, Yuan Q, Saeeduddin M, et al. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers,2016,153:663−678. doi: 10.1016/j.carbpol.2016.08.022
    [10]
    Liao D W, Cheng C, Liu J P, et al. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods[J]. International Journal of Biological Macromolecules,2020,152:894−903. doi: 10.1016/j.ijbiomac.2020.02.325
    [11]
    Wei X, Yang Z, Guo Y, et al. Composition and biological activity of tea polysaccharides obtained by water extraction and enzymatic extraction[J]. Latin American Journal of Pharmacy,2010,29(1):117−121.
    [12]
    Chen S, Shang H, Yang J, et al. Effects of different extraction techniques on physicochemical properties and activities of polysaccharides from comfrey (Symphytum officinale L.) root[J]. Industrial Crops and Products,2018,121:18−25. doi: 10.1016/j.indcrop.2018.04.063
    [13]
    何晓梅, 张颖, 许星云, 等. 低档绿茶多糖的酶法辅助提取及抗氧化活性研究[J]. 食品工业科技,2015,36(10):153−157.
    [14]
    张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163.
    [15]
    卢娇娇. 柴胡多糖的分离纯化和结构分析[D]. 长春: 东北师范大学, 2019.
    [16]
    许凤, 王长远. 响应面法优化物理辅助碱法提取米糠蛋白工艺[J]. 食品科学,2014,35(20):11−16.
    [17]
    孙平楠, 周小玲, 汪东风. 一种水溶性茶多糖的单糖组成及糖醛酸含量的测定[J]. 今日药学,2008(1):58−60.
    [18]
    韩婷, 史国华, 李素哲, 等. 壳聚糖中蛋白质含量测定方法的研究[J]. 中国医疗器械杂志,2016(2):122−124. doi: 10.3969/j.issn.1671-7104.2016.02.014
    [19]
    刘艳芳, 薛令坤, 唐庆九, 等. 刺芹侧耳下脚料水溶性细胞壁多糖碱提工艺优化及活性分析[J]. 食用菌学报,2019(4):116−122.
    [20]
    Medlej M K, Cherri B, Nasser G, et al. Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties[J]. International Journal of Biological Macromolecules,2020,161:958−968. doi: 10.1016/j.ijbiomac.2020.06.021
    [21]
    Gu J, Li Q, Liu J, et al. Ultrasonic–assisted extraction of polysaccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans[J]. International Journal of Biological Macromolecules,2020,167:423−433.
    [22]
    张丽芬. 果胶多糖超声波定向降解途径及机理研究[D]. 杭州: 浙江大学, 2013.
    [23]
    Lin T, Liu Y, Lai C, et al. The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds[J]. Industrial Crops and Products,2018,125:150−159. doi: 10.1016/j.indcrop.2018.08.078
    [24]
    Cheng Z, Song H, Yang Y, et al. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill[J]. International Journal of Biological Macromolecules,2015,76:161−168. doi: 10.1016/j.ijbiomac.2015.01.048
    [25]
    Chen R, Li S, Liu C, et al. Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves[J]. Process Biochemistry,2012,47(12):2040−2050. doi: 10.1016/j.procbio.2012.07.022
    [26]
    Wang Y, Liu Y, Huo J, et al. Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides[J]. International Journal of Biological Macromolecules,2013,62:714−719. doi: 10.1016/j.ijbiomac.2013.10.006
    [27]
    Chen H, Zhang M, Qu Z, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis)[J]. Food Chemistry,2008,106(2):559−563. doi: 10.1016/j.foodchem.2007.06.040
    [28]
    Shang H, Chen S, Li R, et al. Influences of extraction methods on physicochemical characteristics and activities of Astragalus cicer L. polysaccharides[J]. Process Biochemistry,2018,73:220−227. doi: 10.1016/j.procbio.2018.07.016
    [29]
    陈玉玲, 张宜英, 王碧. 南瓜多糖的提取及纯化[J]. 内江师范学院学报,2010(2):39−42.
    [30]
    Guo R, Li X, Chen X, et al. An ultrasonic-extracted arabinoglucan from Tamarindus indica L. pulp: A study on molecular and structural characterizations[J]. International Journal of Biological Macromolecules,2020,164:3687−3697. doi: 10.1016/j.ijbiomac.2020.08.206
    [31]
    Dou J, Meng Y, Liu L, et al. Purification, characterization and antioxidant activities of polysaccharides from thinned-young apple[J]. International Journal of Biological Macromolecules Structure Function & Interactions,2015,72:31−40.
    [32]
    He N, Tian L, Zhai X, et al. Composition characterization, antioxidant capacities and anti-proliferative effects of the polysaccharides isolated from Trametes lactinea (Berk.) Pat[J]. International Journal of Biological Macromolecules,2018,115:114−123. doi: 10.1016/j.ijbiomac.2018.04.049
    [33]
    陈同强, Adilbekov J, 王娟, 等. 凝胶渗透色谱-多角度激光散射联用技术研究红芪多糖中4个组分分子特征[J]. 中国中药杂志,2012,37(12):1798−1803.
    [34]
    张汇, 聂少平, 艾连中, 等. 灵芝多糖的结构及其表征方法研究进展[J]. 中国食品学报,2020(1):290−301.
    [35]
    Yin L, Fu S, Wu R, et al. Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity[J]. International Journal of Biological Macromolecules,2020,164:1124−1132. doi: 10.1016/j.ijbiomac.2020.07.125
  • Cited by

    Periodical cited type(12)

    1. 赵星,张嘉楠,张一鸣,金欣欣,苏俏,宋亚辉,李玉荣,王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报. 2025(01): 226-233 .
    2. 魏松丽,张丽霞,孙强,芦鑫,靳淑秀,孙晓静,金璐,游静,黄纪念. 真空干燥花生油体的条件优化及性质表征. 河南工业大学学报(自然科学版). 2024(01): 8-16 .
    3. 张亚靖,陈复生,王颖颖,刘晨,郑乾坤,殷丽君. 油脂体的提取方法及其在食品中应用的研究进展. 中国油脂. 2024(08): 131-136 .
    4. 单子明,彭郁,秦琛强,傅娆,李茉,倪元颖,温馨. 植物油脂体提取及稳定性评价研究进展. 食品科学. 2024(19): 19251-19262 .
    5. 忠梦,刘白宁,华威,王锋,荣瑞芬,段玉权. 不同包装核桃仁氧化机制分析. 食品科学. 2024(20): 65-73 .
    6. 尹国友,杨卓凡,曾姣,张莹莹,孙婕,王召. 大豆油体包埋韭菜籽油微胶囊工艺优化及其稳定性评价. 食品科技. 2024(11): 267-275 .
    7. 李天赐,陈毅保,刘昆仑,陈复生,杨趁仙,段晓杰,朱婷伟. 界面蛋白对水酶法提取植物油脂过程中乳状液稳定性影响的研究进展. 食品科学. 2023(17): 188-195 .
    8. 王广婕,赵焕宇,苏成成,韦旋,吴梦果,单迪,黄萍,马佳歌,侯俊财,姜瞻梅. 油脂体的组成、结构及氧化稳定性研究进展. 食品科学. 2023(21): 293-302 .
    9. 官梦姝,冯雪,刘月,朱秀清,姜瞻梅,江连洲,侯俊财. 3种天然酚类物质对大豆油脂体稳定性及体外消化性的影响. 食品科学. 2022(03): 10-18 .
    10. 秦晓鹏,黄沙沙,聂成镇,禹晓,邓乾春,相启森,朱莹莹. 微波处理对萌动亚麻籽酚类化合物油相迁移的影响. 食品科学技术学报. 2022(03): 124-136 .
    11. 汪锦,应瑞峰,王耀松,黄梅桂. 超声-水酶法对高品质薄壳山核桃油释放的影响. 食品与发酵工业. 2022(18): 177-182 .
    12. 刘子豪,梅雅欣,彭郁,傅娆,秦琛强,倪元颖,温馨. 外源蛋白对大豆油脂体稳定性的影响. 食品科学. 2022(22): 1-9 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (359) PDF downloads (43) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return