YU Zhaorui, ZHAO Xin, QIU Feng. Bacteriocins and Polysaccharides from Bifidobacterium, Lactobacillus and Bacillus[J]. Science and Technology of Food Industry, 2021, 42(24): 396−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100264.
Citation: YU Zhaorui, ZHAO Xin, QIU Feng. Bacteriocins and Polysaccharides from Bifidobacterium, Lactobacillus and Bacillus[J]. Science and Technology of Food Industry, 2021, 42(24): 396−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100264.

Bacteriocins and Polysaccharides from Bifidobacterium, Lactobacillus and Bacillus

More Information
  • Received Date: November 02, 2020
  • Available Online: October 18, 2021
  • : Bifidobacterium, Lactobacillus and Bacillus are important members of probiotics and have great development potential. They can not only regulate the intestinal microecological balance and prevent diseases as the dominant bacteria, but also produce compounds such as bacteriocins and polysaccharides with broad-spectrum antibacterial activity. Some of these compounds also have antitumor and antioxidant properties. These characteristics make these compounds and strains to be developed into potential dietary supplements and functional foods. However, the structure, activity, mechanism and safety of many compounds are still unclear. This review summarizes the bacteriocins and polysaccharides compounds isolated from Bifidobacterium, Lactobacillus and Bacillus with probiotic potential from 2010 to 2019, and reviews their classification, structure, antibacterial, antitumor, antioxidant activities and other functions, which provide a reference for the development and application of strains and their metabolites.
  • [1]
    WILLIAMS N T. Probiotics[J]. American Journal of Health-System Pharmacy,2010,67(6):449−458. doi: 10.2146/ajhp090168
    [2]
    KALAM A, MANOBENDRO S, LI T, et al. Probiotic species in the modulation of gut microbiota: An overview[J]. BioMed Research International,2018,8:9478630.
    [3]
    ELSHAGHABEE F M F, ROKANA N, GULHANE R D, et al. Bacillus as potential probiotics: Status, concerns, and future perspectives[J]. Frontiers in Microbiology,2017,8:1490. doi: 10.3389/fmicb.2017.01490
    [4]
    LEE N K, KIM W S, PAIK H D. Bacillus strains as human probiotics: Characterization, safety, microbiome and probiotic carrier[J]. Food Science and Biotechnology,2019,28(5):1297−1305. doi: 10.1007/s10068-019-00691-9
    [5]
    TIMOTHY S. Notice to US food and drug administration that Bacillus coagulans GBI-30, 6086 is generally recognized as safe for use in non-exempt term infant formula[EB/OL]. 2016-07-11[2020-11-24].https://www.fda.gov/media/100025/download.
    [6]
    ADAMS C. Generally recognized as safe (gras) conclusion for the use of Bacillus subtilis de111 in foods[EB/OL]. 2018-12-03[2020-11-24].https://www.fda.gov/media/132389/download.
    [7]
    SEWALT V. Subtilisin enzyme preparation derived from Bacillus subtilis expressing a subtilisin gene from Bacillus amyloli quefaciens is generally recognized as safe for use in food proces[EB/OL]. 2017-06-16[2020-11-24].https://www.fda.gov/media/107462/download.
    [8]
    DENNIS M. Glutaminase from Bacillus licheniformis produced in Bacillus licheniformis[EB/OL]. 2018-10-26[2020-11-24]. https://www.fda.gov/media/124998/download.
    [9]
    MURPHY E F, COTTER P D, HOGAN A, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity[J]. Gut,2013,62(2):220−226. doi: 10.1136/gutjnl-2011-300705
    [10]
    GEEL-SCHUTTEN G, FLESCH F, BRINK B T, et al. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides[J]. Applied Microbiology and Biotechnology,1998,50(6):697−703. doi: 10.1007/s002530051353
    [11]
    SCHEPPER J D, IRWIN R, KANG J, et al. Probiotics in gut-bone signaling[J]. Understanding the Gut-bone Signaling Axis,2017:225−247.
    [12]
    SCHIAVI E, PLATTNER S, RODRIGUEZ-PEREZ N, et al. Exopolysaccharide from Bifidobacterium longum subsp. longum 35624™ modulates murine allergic airway responses[J]. Beneficial Microbes,2018,9(5):761−773. doi: 10.3920/BM2017.0180
    [13]
    INTURRI R, MOLINARO A, LORENZO F D, et al. Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum[J]. Carbohydrate Polymers,2017,174:1172−1180. doi: 10.1016/j.carbpol.2017.07.039
    [14]
    INTURRI R, MANGANO K, SANTAGATI M, et al. Immunomodulatory effects of Bifidobacterium longum W11 produced exopolysaccharide on cytokine production[J]. Current Pharmaceutical Biotechnology,2017,18(11):883−889.
    [15]
    CHEIKHYOUSSEF A, CHEIKHYOUSSEF N, CHEN H, et al. Bifidin I–A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence[J]. Food Control,2010,21(5):746−753. doi: 10.1016/j.foodcont.2009.11.003
    [16]
    PEI J, YUAN Y, YUE T. Characterization of bacteriocin bificin C6165: A novel bacteriocin[J]. Journal of Applied Microbiology,2013,114(5):1273−1284. doi: 10.1111/jam.12145
    [17]
    LIU L, LI H, XU R H, et al. Expolysaccharides from Bifidobacterium animalis RH activates RAW 264.7 macrophages through toll-like receptor 4[J]. Food and Agricultural Immunology,2017,28(1):149−161. doi: 10.1080/09540105.2016.1230599
    [18]
    SHANG N, XU R, LI P. Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH[J]. Carbohydrate Polymers,2013,91(1):128−134. doi: 10.1016/j.carbpol.2012.08.012
    [19]
    XU R, SHANG N, LI P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH[J]. Anaerobe,2011,17(5):226−231. doi: 10.1016/j.anaerobe.2011.07.010
    [20]
    ALTMANN F, KOSMA P, O’CALLAGHAN A, et al. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624™[J]. PLoS One,2016,11(9):e0162983. doi: 10.1371/journal.pone.0162983
    [21]
    SCHIAVI E, GLEINSER M, MOLLOY E, et al. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses[J]. Applied and Environmental Microbiology,2016,82(24):7185−7196. doi: 10.1128/AEM.02238-16
    [22]
    LEIVERS S, HIDALGO-CANTABRANA C, ROBINSON G, et al. Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster[J]. Carbohydrate Research,2011,346(17):2710−2717. doi: 10.1016/j.carres.2011.09.010
    [23]
    RUAS-MADIEDO P, MEDRANO M, SALAZAR N, et al. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells[J]. Journal of Applied Microbiology,2010,109(6):2079−2086. doi: 10.1111/j.1365-2672.2010.04839.x
    [24]
    SALAZAR N, RUAS-MADIEDO P, KOLIDA S, et al. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human fecal microbiota in pH-controlled batch cultures[J]. International Journal of Food Microbiology,2009,135(3):260−267. doi: 10.1016/j.ijfoodmicro.2009.08.017
    [25]
    LI W, XIA X, TANG W, et al. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1[J]. Journal of Agricultural and Food Chemistry,2015,63(13):3454−3463. doi: 10.1021/acs.jafc.5b01086
    [26]
    LI W, JI J, TANG W, et al. Characterization of an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB2-1[J]. Carbohydrate Polymers,2014,105:334−340. doi: 10.1016/j.carbpol.2014.01.093
    [27]
    WANG Y, QIN Y, XIE Q, et al. Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish[J]. Frontiers in Microbiology,2018,9:2276. doi: 10.3389/fmicb.2018.02276
    [28]
    SIMONS A, ALHANOUT K, DUVAL R E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria[J]. Microorganisms,2020,8(5):639. doi: 10.3390/microorganisms8050639
    [29]
    JIANG H, ZOU J, CHENG H, et al. Purification, characterization, and mode of action of pentocin JL-1, a novel bacteriocin isolated from Lactobacillus pentosus, against drug-resistant Staphylococcus aureus[J]. Biomed Research International,2017,2017(2):1−11.
    [30]
    WANG Y, QIN Y, ZHANG Y, et al. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes[J]. Food Control,2019,97:87−93. doi: 10.1016/j.foodcont.2018.10.025
    [31]
    CARVALHO K, BAMBIRRA F, KRUGER M F, et al. Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product[J]. Journal of Industrial Microbiology and Biotechnology,2010,37(4):381−390. doi: 10.1007/s10295-009-0684-y
    [32]
    HATA T, TANAKA R, OHMOMO S. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1[J]. International Journal of Food Microbiology,2010,137(1):94−99. doi: 10.1016/j.ijfoodmicro.2009.10.021
    [33]
    SVETOCH E A, ERUSLANOV B V, LEVCHUK V P, et al. Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum[J]. Applied and Environmental Microbiology,2011,77(8):2749−2754. doi: 10.1128/AEM.02481-10
    [34]
    ZHANG H, LIU L, HAO Y, et al. Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product[J]. Microbiology and Immunology,2013,57(11):746−755. doi: 10.1111/1348-0421.12091
    [35]
    YUE T, PEI J, YUAN Y. Purification and characterization of anti-alicyclobacillus bacteriocin produced by Lactobacillus rhamnosus[J]. Journal of Food Protection,2013,76(9):1575−1581. doi: 10.4315/0362-028X.JFP-12-496
    [36]
    HU M, ZHAO H, ZHANG C, et al. Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables[J]. Journal of Agricultural and Food Chemistry,2013,61(47):11676−11682. doi: 10.1021/jf403370y
    [37]
    CHEN Y, WANG Y, CHOW Y, et al. Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510[J]. Archives of Microbiology,2014,196(3):193−199. doi: 10.1007/s00203-014-0958-2
    [38]
    SONG D F, ZHU M Y, GU Q. Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5[J]. PLoS One,2014,9(8):e105549. doi: 10.1371/journal.pone.0105549
    [39]
    SAHOO T K, JENA P K, PATEL A K, et al. Purification and molecular characterization of the novel highly potent bacteriocin TSU4 produced by Lactobacillus animalis TSU4[J]. Applied Biochemistry and Biotechnology,2015,177(1):90−104. doi: 10.1007/s12010-015-1730-z
    [40]
    GE J, SUN Y, XIN X, et al. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice[J]. Scientific Reports,2016,6(1):1−7. doi: 10.1038/s41598-016-0001-8
    [41]
    YI L, DANG Y, WU J, et al. Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China[J]. Journal of Dairy Science,2016,99(9):7002−7015. doi: 10.3168/jds.2016-11166
    [42]
    ZOMMITI M, ALMOHAMMED H, FERCHICHI M. Purification and characterization of a novel anti-campylobacter bacteriocin produced by Lactobacillus curvatus DN317[J]. Probiotics and Antimicrobial Proteins,2016,8(4):191−201. doi: 10.1007/s12602-016-9237-7
    [43]
    RIVAS F P, CASTRO M P, VALLEJO M, et al. Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface[J]. Meat Science,2014,97(4):475−479. doi: 10.1016/j.meatsci.2014.03.003
    [44]
    ZHAO S, HAN J, BIE X, et al. Purification and characterization of plantaricin JLA-9: A novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage[J]. Journal of Agricultural and Food Chemistry,2016,64(13):2754−2764. doi: 10.1021/acs.jafc.5b05717
    [45]
    CHEN L, GU Q, LI P, et al. Purification and characterization of plantaricin ZJ316, a novel bacteriocin against Listeria monocytogenes from Lactobacillus plantarum ZJ316[J]. Journal of Food Protection,2018,81(12):1929−1935. doi: 10.4315/0362-028X.JFP-18-306
    [46]
    FONTANA C, LI S, YANG Z, et al. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER[J]. Carbohydrate Research,2015,402:87−94. doi: 10.1016/j.carres.2014.09.003
    [47]
    ZHANG L, LIU C, LI D, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88[J]. International Journal of Biological Macromolecules,2013,54:270−275. doi: 10.1016/j.ijbiomac.2012.12.037
    [48]
    EL-DEEB N M, YASSIN A M, AL-MADBOLY L A, et al. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer[J]. Microbial Cell Factories,2018,17(1):1−15. doi: 10.1186/s12934-017-0850-2
    [49]
    BALZARETTI S, TAVERNITI V, GUGLIELMETTI S, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells[J]. Applied and Environmental Microbiology,2017,83(3):e02702−16.
    [50]
    ISMAIL B, NAMPOOTHIRI K. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510[J]. Biologia,2013,68(6):1041−1047. doi: 10.2478/s11756-013-0275-2
    [51]
    ISMAIL B, NAMPOOTHIRI K M. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510[J]. Archives of Microbiology,2010,192(12):1049−1057. doi: 10.1007/s00203-010-0636-y
    [52]
    DERTLI E, COLQUHOUN I J, GUNNING A P, et al. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785[J]. Journal of Biological Chemistry,2013,288(44):31938−31951. doi: 10.1074/jbc.M113.507418
    [53]
    LA RAGIONE R M, NARBAD A, GASSON M J, et al. In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry[J]. Letters in Applied Microbiology,2004,38(3):197−205. doi: 10.1111/j.1472-765X.2004.01474.x
    [54]
    BERECKA M P, CHOMA A, WAŚKO A, et al. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources[J]. Carbohydrate Polymers,2015,117:501−509. doi: 10.1016/j.carbpol.2014.10.006
    [55]
    BERECKA M P, WASKO A, SZWAJGIER D, et al. Bifidogenic and antioxidant activity of exopolysaccharides produced by Lactobacillus rhamnosus E/N cultivated on different carbon sources[J]. Polish Journal of Microbiology,2013,62(2):181−189. doi: 10.33073/pjm-2013-023
    [56]
    AYYASH M, ABU-JDAYIL B, ITSARANUWAT P, et al. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk[J]. International Journal of Biological Macromolecules,2020,144:938−946. doi: 10.1016/j.ijbiomac.2019.09.171
    [57]
    TANG W, DONG M, WANG W, et al. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1[J]. Carbohydrate Polymers,2017,173:654−664. doi: 10.1016/j.carbpol.2017.06.039
    [58]
    YOU X, LI Z, MA K, et al. Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5[J]. Carbohydrate Polymers,2020,235:115977. doi: 10.1016/j.carbpol.2020.115977
    [59]
    HUANG Z, LIN F, ZHU X, et al. An exopolysaccharide from Lactobacillus plantarum H31 in pickled cabbage inhibits pancreas α-amylase and regulating metabolic markers in HepG2 cells by AMPK/PI3K/Akt pathway[J]. International Journal of Biological Macromolecules,2020,143:775−784. doi: 10.1016/j.ijbiomac.2019.09.137
    [60]
    DONNARUMMA G, MOLINARO A, CIMINI D, et al. Lactobacillus crispatus L1: High cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens[J]. Bmc Microbiology,2014,14(1):137−149. doi: 10.1186/1471-2180-14-137
    [61]
    YANG E J, KIM Y S, CHANG H C. Purification and characterization of antifungal δ-dodecalactone from Lactobacillus plantarum AF1 isolated from kimchi[J]. Journal of Food Protection,2011,74(4):651−657. doi: 10.4315/0362-028X.JFP-10-512
    [62]
    LIN T H, PAN T M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102[J]. Journal of Microbiology, Immunology and Infection,2019,52(3):409−417. doi: 10.1016/j.jmii.2017.08.003
    [63]
    JEEVARATNAM K, VIDHYASAGAR V, AGALIYA P J, et al. Characterization of an antibacterial compound, 2-hydroxyl indole-3-propanamide, produced by lactic acid bacteria isolated from fermented batter[J]. Applied Biochemistry and Biotechnology,2015,177(1):137−147. doi: 10.1007/s12010-015-1733-9
    [64]
    SUZUKI Y, KOSAKA M, SHINDO K, et al. Identification of antioxidants produced by Lactobacillus plantarum[J]. Bioscience, Biotechnology and Biochemistry,2013,77(6):1299−1302. doi: 10.1271/bbb.121006
    [65]
    RYU E H, YANG E J, WOO E R, et al. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi[J]. Food Microbiology,2014,41:19−26. doi: 10.1016/j.fm.2014.01.011
    [66]
    WANG H K, YAN Y H, WANG J M, et al. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014[J]. PLoS One,2012,7(1):e29452. doi: 10.1371/journal.pone.0029452
    [67]
    KANG J E, KIM T J, MOON G S. A novel Lactobacillus casei LP1 producing 1, 4-dihydroxy-2-naphthoic acid, a bifidogenic growth stimulator[J]. Preventive Nutrition and Food Science,2015,20(1):78−81. doi: 10.3746/pnf.2015.20.1.78
    [68]
    OKADA Y, TSUZUKI Y, NARIMATSU K, et al. 1, 4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines[J]. Journal of Leukocyte Biology,2013,94(3):473−480. doi: 10.1189/jlb.0212104
    [69]
    LIU C, LU J, LU L, et al. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1[J]. Bioresource Technology,2010,101(14):5528−5533. doi: 10.1016/j.biortech.2010.01.151
    [70]
    AL-THUBIANI A S A, MAHER Y A, FATHI A, et al. Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora[J]. Saudi Pharmaceutical Journal,2018,26(8):1089−1097. doi: 10.1016/j.jsps.2018.05.019
    [71]
    LIM K B, BALOLONG M P, KIM S H, et al. Isolation and characterization of a broad spectrum bacteriocin from Bacillus amyloliquefaciens RX7[J]. Biomed Research International,2016,2016:7.
    [72]
    THASANA N, PRAPAGDEE B, RANGKADILOK N, et al. Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated β-amino acid[J]. Febs Letters,2010,584(14):3209−3214. doi: 10.1016/j.febslet.2010.06.005
    [73]
    TANAKA K, ISHIHARA A, NAKAJIMA H. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1469−1476. doi: 10.1021/jf404531t
    [74]
    CHEN L, WANG N, WANG X, et al. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10[J]. Bioresource Technology,2010,101(22):8822−8827. doi: 10.1016/j.biortech.2010.06.054
    [75]
    ROMANO A, VITULLO D, PIETRO A D, et al. Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7[J]. Journal of Natural Products,2011,74(2):145−151. doi: 10.1021/np100408y
    [76]
    FU L, WANG C, RUAN X, et al. Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208[J]. International Journal of Food Microbiology,2018,266:60−68. doi: 10.1016/j.ijfoodmicro.2017.11.012
    [77]
    SONG B, RONG Y J, ZHAO M X, et al. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic[J]. Applied Microbiology and Biotechnology,2013,97(16):7141−7150. doi: 10.1007/s00253-013-5000-0
    [78]
    ROMANO A, VITULLO D, SENATORE M, et al. Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A[J]. Journal of Natural Products,2013,76(11):2019−2025. doi: 10.1021/np400119n
    [79]
    TAREQ F S, LEE M A, LEE H S, et al. Gageostatins A–C, antimicrobial linear lipopeptides from a marine Bacillus subtilis[J]. Marine Drugs,2014,12(2):871−885. doi: 10.3390/md12020871
    [80]
    BERIĆ T, STANKOVIĆ S, DRAGANIĆ V, et al. Novel antilisterial bacteriocin licheniocin 50.2 from Bacillus licheniformis VPS 50.2 isolated from soil sample[J]. Journal of Applied Microbiology,2014,116(3):502−510. doi: 10.1111/jam.12393
    [81]
    SCHOLZ R, VATER J, BUDIHARJO A, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42[J]. Journal of Bacteriology,2014,196(10):1842−1852. doi: 10.1128/JB.01474-14
    [82]
    RAMACHANDRAN R, CHALASANI A G, LAL R, et al. A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1[J]. The Scientific World Journal,2014,2014:968487.
    [83]
    MA Z, HU J, WANG X, et al. NMR spectroscopic and MS/MS spectrometric characterization of a new lipopeptide antibiotic bacillopeptin B1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74[J]. The Journal of Antibiotics,2014,67(2):175−178. doi: 10.1038/ja.2013.89
    [84]
    QIN Y, WANG Y, HE Y, et al. Characterization of subtilin L-Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil[J]. Frontiers in Microbiology,2019,10:484. doi: 10.3389/fmicb.2019.00484
    [85]
    REGMI S, CHOI Y H, CHOI Y S, et al. Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy[J]. Folia Microbiologica,2017,62(2):127−138. doi: 10.1007/s12223-016-0479-2
    [86]
    REGMI S, CHOI Y S, CHOI Y H, et al. Antimicrobial peptide from Bacillus subtilis CSB138: Characterization, killing kinetics, and synergistic potency[J]. International Microbiology,2017,20:43−53.
    [87]
    SON S, KO S K, JANG M, et al. New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006[J]. Marine Drugs,2016,14(4):72. doi: 10.3390/md14040072
    [88]
    TAREQ F S, SHIN H J. Bacilotetrins A and B, anti-staphylococcal cyclic-lipotetrapeptides from a marine-derived Bacillus subtilis[J]. Journal of Natural Products,2017,80(11):2889−2892. doi: 10.1021/acs.jnatprod.7b00356
    [89]
    BOUALLEGUE A, CASILLO A, CHAARI F, et al. Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities[J]. International Journal of Biological Macromolecules,2020,144:316−324. doi: 10.1016/j.ijbiomac.2019.12.108
    [90]
    CAI G, LIU Y, LI X, et al. New levan-type exopolysaccharide from Bacillus amyloliquefaciens as an antiadhesive agent against enterotoxigenic Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2019,67(28):8029−8034. doi: 10.1021/acs.jafc.9b03234
    [91]
    TAREQ F S, KIM J H, LEE M A, et al. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions[J]. Journal of Agricultural and Food Chemistry,2013,61(14):3428−3434. doi: 10.1021/jf4009229
    [92]
    JEONG M H, LEE Y S, CHO J Y, et al. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens[J]. Microbial Pathogenesis,2017,110:645−653. doi: 10.1016/j.micpath.2017.07.027
    [93]
    LIU S, HAN X, JIANG Z, et al. Hetiamacin B–D, new members of amicoumacin group antibiotics isolated from Bacillus subtilis PJS[J]. The Journal of Antibiotics,2016,69(10):769−772. doi: 10.1038/ja.2016.3
    [94]
    SOLTANI S, HAMMAMI R, COTTER P D, et al. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations[J]. Fems Microbiology Reviews,2021,45(1):1−24.
  • Cited by

    Periodical cited type(4)

    1. 关玉婷,温思萌,冯雪,白云鹏,陈瑞瑞,沈晓勇,冯佳宁,常世敏,程鑫颖. 茯苓渣多糖组成分析及体外抗癌、免疫活性研究. 食品工业科技. 2022(21): 381-387 . 本站查看
    2. 李霞,刘承鑫,黄艳,莫观兰,关媛. 碱提西番莲叶多糖的分离、鉴定及生物活性. 食品与机械. 2021(03): 137-143 .
    3. 钱艳艳,王丽,文春南,周艳,李晓,张丽先,周贤宇,麻兵继. 鲜地黄低聚糖纯化及其理化特性和抗氧化活性研究. 天然产物研究与开发. 2021(09): 1470-1477 .
    4. 王峙力,王鑫,韩烨,谢越,马永强. 甜玉米芯硒多糖的制备及其对淀粉酶抑制作用. 包装工程. 2021(21): 33-41 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (247) PDF downloads (39) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return