Citation: | FANG Lei, MA Yongqiang. Research Progress on Application of Nano Ceria Mimic Peroxidase[J]. Science and Technology of Food Industry, 2022, 43(1): 417−424. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100254. |
[1] |
ATTAR F, SHAHPAR M G, RASTI B, et al. Nanozymes with intrinsic peroxidase-like activities[J]. Journal of Molecular Liquids,2019,278:130−144. doi: 10.1016/j.molliq.2018.12.011
|
[2] |
ZHANG R F, FAN K L, YAN X Y. Nanozymes: Created by learning from nature[J]. Science China Life Sciences,2020,63(8):1183−1200. doi: 10.1007/s11427-019-1570-7
|
[3] |
HOU L, JIANG G Y, SUN Y. Progress and trend on the regulation methods for nanozyme activity and its application[J]. Catalysts,2019,9(12):1−17.
|
[4] |
VINOTHKUMAR G, ARUNKUMAR P, MAHESH A, et al. Size-and defect-controlled anti-oxidant enzyme mimetic and radical scavenging properties of cerium oxide nanoparticles[J]. New Journal of Chemistry,2018,42(23):18810−18823. doi: 10.1039/C8NJ04435J
|
[5] |
MENG X Q, FAN K L, YAN X Y. Nanozymes: An emerging field bridging nanotechnology and enzymology[J]. Sci China Life Sci,2019,62(11):1543−1546. doi: 10.1007/s11427-019-1557-8
|
[6] |
LIANG M M, YAN X Y. Nanozymes: From new concepts, mechanisms, and standards to applications[J]. Accounts of Chemical Research,2019,52(8):2190−2200. doi: 10.1021/acs.accounts.9b00140
|
[7] |
YANG W T, WANG X, SONG S Y, et al. Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts[J]. Chem,2019,5(7):1743−1774. doi: 10.1016/j.chempr.2019.04.009
|
[8] |
RZIGALINSKI B A, CARFAGNA C S, et al. Cerium oxide nanoparticles: Potential for revolutionizing treatment of diseases [M]. Nanotechnology Characterization Tools for Environment, Health and Safety, 2019: 219−239.
|
[9] |
HECKERT E G, SEALS, SELF W T. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium[J]. Environ Sci Technol,2008,42(13):5014−5019. doi: 10.1021/es8001508
|
[10] |
ANTONY D, YADAV R. Facile fabrication of green nano pure CeO(2) and Mn-decorated CeO(2) with Cassia angustifolia seed extract in water refinement by optimal photodegradation kinetics of malachite green[J]. Environmental Science and Pollution Research,2020,28(15):18589−18603.
|
[11] |
LIU B W, LIU J W. Surface modification of nanozymes[J]. Nano Research,2017,10(4):1125−1148. doi: 10.1007/s12274-017-1426-5
|
[12] |
ZHANG R F, FAN K L, YAN X Y. Cerium oxide based nanozymes[M]. Nanozymology, 2020: 279−329.
|
[13] |
WANG G H, ZHANG J Z, HE X. Ceria nanoparticles as enzyme mimetics[J]. Chinese Journal of Chemistry,2017,35(6):791−800. doi: 10.1002/cjoc.201600845
|
[14] |
关桦楠, 宋岩, 龚德状, 等. 新型纳米模拟酶在食品安全分析中的应用进展[J]. 食品工业科技,2019,40(15):356−362, 367. [GUAN H N, SONG Y, GONG D Z, et al. Research progress on application of novel nano-enzyme mimetics in food safety analysis[J]. Science and Technology of Food Industry,2019,40(15):356−362, 367.
|
[15] |
ZHANG X, WANG C Y, GAO Y F. Cerium(III)-doped MoS2 nanosheets with expanded interlayer spacing and peroxidase-mimicking properties for colorimetric determination of hydrogenperoxide[J]. Microchimica Acta,2020,187(2):1−9.
|
[16] |
JIN X Y, YIN W Q, NI G, et al. Hydrogen-bonding-induced colorimetric detection of melamine based on the peroxidase activity of gelatin-coated cerium oxide nanospheres[J]. Analytical Methods,2018,10(8):841−847. doi: 10.1039/C7AY02296D
|
[17] |
LIAN J J, LIU P, LI X C, et al. Perylene diimide-modified magnetic γ-Fe2O3/CeO2 nanoparticles as peroxidase mimics for highly sensitive colorimetric detection of Vitamin C[J]. Appl Organometal Chem,2019,33(5):1−10.
|
[18] |
LI X, PU Z L, ZHOU H, et al. Synergistically enhanced peroxidase-like activity of Pd nanoparticles dispersed on CeO2 nanotubes and their application in colorimetric sensing of sulfhydryl compounds[J]. J Mater Sci,2018:1−12.
|
[19] |
JAMPAIAH D, REDDY T S, KANDJANI A E, et al. Fe-doped CeO2 nanorods forenhanced peroxidase-like activity and their application towards glucose detection[J]. Journal of Materials Chemistry B,2016,4(22):3874−3885. doi: 10.1039/C6TB00422A
|
[20] |
ESCH F, FABRIS S, ZHOU L, et al. Electron localization determines defect formation on ceria substrates[J]. Science,2005,309:752−755. doi: 10.1126/science.1111568
|
[21] |
JIAO X, SONG H, ZHAO H, et al. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection[J]. Anal Methods,2012,4(10):3261. doi: 10.1039/c2ay25511a
|
[22] |
ZHAO H, DONG Y M, JIANG P P, et al. Highly dispersed CeO2 on TiO2 nanotube: A synergistic nanocomposite with superior peroxidase-like activity[J]. ACS Applied Materials & Interfaces,2015,7(12):6451−6461.
|
[23] |
LIU Q Y, YANG Y T, LV X T, et al. One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection[J]. Sensors and Actuators B-Chemical,2017,240:726−734. doi: 10.1016/j.snb.2016.09.049
|
[24] |
LIU H, DING Y N, YANG B C, et al. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance[J]. Sensors and Actuators B-Chemical,2018,271:336−345. doi: 10.1016/j.snb.2018.05.108
|
[25] |
LI H L, GAO H M, FANG H Y, et al. Synthesis and characterization of novel coral-like hollow CeO2 nanostructures and their potential as peroxidase mimics[J]. Solid State Sciences,2019,97:1−5.
|
[26] |
MA Y Y, GAO W, ZHANG Z Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surface Science Reports,2018,73:1−36. doi: 10.1016/j.surfrep.2018.02.001
|
[27] |
HUANG F, WANG J Z, CHEN W M. Synergistic peroxidase-like activity of CeO2-coated hollow Fe3O4 nanocompo-sites as an enzymatic mimic for low detection limit of glucose[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,83:40−49. doi: 10.1016/j.jtice.2017.12.011
|
[28] |
GUO W J, ZHANG M, LOUZ P, et al. Engineering nanoceria for enhanced peroxidase mimics: A solid solution strategy[J]. ChemCatChem,2019,11(2):737−743. doi: 10.1002/cctc.201801578
|
[29] |
ALIZADEH N, SALIMI A, HALLAJ R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone[J]. Sensors and Actuators B:Chemical,2019,288:44−52. doi: 10.1016/j.snb.2019.01.068
|
[30] |
WANG X, LIU D P, LI J Q, et al. Clean synthesis of Cu2O@CeO2 core@shell nanocubes with highly active interface[J]. Npg Asia Materials,2015,7:1−7.
|
[31] |
LIAN J J, LIU P, JIN C Q, et al. Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione[J]. Microchimica Acta,2019:331−340.
|
[32] |
YANG W N, LI J, YANG J. Biomass-derived hierarchically porous CoFe-LDH/CeO2 hybrid with peroxidase-like activity for colorimetric sensing of H2O2 and glucose[J]. Journal of Alloys and Compounds,2019,815:1−12.
|
[33] |
GE J C, YANG X Y, LUO J H. Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity[J]. Applied Materials Today,2019,15:482−493. doi: 10.1016/j.apmt.2019.03.009
|
[34] |
TAN Z C, CHEN Y C, ZHANG J R, et al. Nanoisozymes: The origin behind pristine CeO2 as enzyme mimetics[J]. Chemistry-A European Journal,2020,26(46):10598−10606. doi: 10.1002/chem.202001597
|
[35] |
ZHAGN J R, TAN Z C, LENG W Y, et al. Chemical state tuning of surface Ce species on pristine CeO2 with 2400% boosting in peroxidase-like activity for glucose detection[J]. Chemical Communications,2020,6(57):7897−7900.
|
[36] |
GUAN H J, ZHANG J, LIU Y. Rapid quantitative determination of hydrogen peroxide using an electrochemical sensor based on PtNi alloy/CeO2 plates embedded in N-doped carbon nanofibers[J]. Electrochimica Acta,2019,295:997−1005. doi: 10.1016/j.electacta.2018.11.126
|
[37] |
WANG S P, WANG F F, FU C P, et al. AgInSe2-sensitized ZnO nanoflower wide-spectrum responsephotoele-ctrochemical/visual sensing platform via Au@Nanorod-Anchored CeO2 octahedron regulated signal[J]. Analytical Chemistry,2020,92(11):7604−7611. doi: 10.1021/acs.analchem.0c00231
|
[38] |
LIAN J J, LIU P, LI X C, et al. Multi-layer CeO2-wrapped Ag2S microspheres with enhanced peroxidaselike activity for sensitive detection of dopamine[J]. Colloids and Surfaces A,2019,565:1−7. doi: 10.1016/j.colsurfa.2018.12.047
|
[39] |
LIU X L, WANG X H, QI C. Sensitive colorimetric detection of ascorbic acid using Pt/CeO2 nanocomposites as peroxidase mimics[J]. Applied Surface Science,2019,479:532−539. doi: 10.1016/j.apsusc.2019.02.135
|
[40] |
VINOTHKUMAR G, LALITHA A I, BABU K S. Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing[J]. Inorganic Chemistry,2019,58(1):349−358. doi: 10.1021/acs.inorgchem.8b02423
|
[41] |
TIAN Z M, LI J, ZHANG Z Y, et al. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection[J]. Biomaterials,2015,59:116−124. doi: 10.1016/j.biomaterials.2015.04.039
|
[42] |
SHEN H W, DENG W Q, YI R, et al. Ultrasensitive aptasensor for isolation and detection of circulating tumor cells based on CeO2@lIr nanorods and DNA walker[J]. Biosensors and Bioelectronics,2020,168:1−8.
|
[43] |
DAI Y X, WANG X Y, ZHU X D, et al. Electrochemical assays for determination of H2O2 and prostate-specific antigen based on a nanocomposite consisting of CeO2 nanoparticle-decorated MnO2 nanospheres[J]. Microchimica Acta,2020:427−434.
|
[44] |
HENNING D F, MERKL P, YUN C H. Luminescent CeO2: Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures[J]. Biosensors and Bioelectronics,2019,132:286−293. doi: 10.1016/j.bios.2019.03.012
|
[45] |
DONG W F, HUANG Y M. CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose.[J]. Microchim Acta,2019,187(1):1−10.
|
[46] |
VINOTHKUMAR G, SUBRAYAN R, PANDIYAN A, et al. Ionic radii and concentration dependency of RE3+ (Eu3+, Nd3+, Pr3+, and La3+)-doped cerium oxide nanoparticles for enhanced multienzyme-mimetic and hydroxyl radical scavenging activity[J]. The Journal of Physical Chemistry,2019,123(1):541−553.
|
[47] |
ALIZADEH N, SALIMI A, SHAM T K, et al. Intrinsic enzyme-like activities of cerium oxide nanocomposite and its application for extracellular H2O2 detection using an electrochemical microfluidic device[J]. ACS Omega,2020,5(21):11883−11894. doi: 10.1021/acsomega.9b03252
|
[48] |
SAHA P, MAHARAJAN A, DIKSHIT P K, et al. Rapid and reusable detection of hydrogen peroxide using polyurethane scaffold incorporated with cerium oxide nanoparticles[J]. Korean J Chem Eng,2019:2143−2242.
|
[49] |
JAMPAIAH D, REDDY T S, COYLE V E, et al. Co3O4@CeO2 hybrid flower-like microspheres: A strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection[J]. Journal of Materials Chemistry B,2017,5(4):720−730. doi: 10.1039/C6TB02750D
|
[50] |
ZHANG L L, PAN J, LONG Y, et al. CeO2-encapsulated hollow Ag-Au nanocage hybrid nanostructures as high-performance catalysts for cascade reactions[J]. Small,2019,15(43):1−7.
|
1. |
高紫珊,杨意,李军,谢镇蔚,萧雅泳,敬思群,华军利,康会茹,肖志平,杨柳斌. 马蹄三部位生物活性初筛. 中国果菜. 2024(05): 40-47 .
![]() |