Citation: | PENG Shuyue, LIANG Nuanyi, ZHANG Yanzhen, et al. Research Progress in Biosynthesis of Microbial Hydroxyl Unsaturated Fatty Acids by Linoleic Acid Hydratase[J]. Science and Technology of Food Industry, 2021, 42(22): 449−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100119. |
[1] |
BLACK B A, ZANNINI E, CURTIS J M, et al. Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread[J]. Applied and Environmental Microbiology,2013,79(6):1866−1873. doi: 10.1128/AEM.03784-12
|
[2] |
SHAHZADI A. Bio-transformation of fatty acids[D]. Edmonton: University of Alberta, 2012: 10−77.
|
[3] |
PABIŚ S, KULA J. Synthesis and bioactivity of (r)-ricinoleic acid derivatives: A review[J]. Current Medicinal Chemistry,2016,23(35):4037−4056. doi: 10.2174/0929867323666160627104453
|
[4] |
VENKAT V, VENKATESH S, FIONA C, et al. 9- and 13-HODE regulate fatty acid binding protein-4 in human macrophages, but does not involve HODE/GPR132 axis in PPAR-γ regulation of FABP4[J]. Therapeutic Advances in Endocrinology & Metabolism,2018,9(5):137−150.
|
[5] |
NIEMAN D C, MEANEY M P, JOHN C S, et al. 9- and 13-hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2 h running[J]. Brain Behavior & Immunity,2016,56:246−252.
|
[6] |
MARWAT S K, REHMAN F U, KHAN E A, et al. Review-ricinus cmmunis-ethnomedicinal uses and pharmacological activities[J]. Pakistan Journal of Pharmaceutical Sciences,2017,30(5):1815.
|
[7] |
ESCRIBA R P V C. Use of hydroxyoleic acid and similar compounds in the production of medicaments: CN 20081091794[P]. 2002-10-09[2020-11-21]. http://europepmc.org/article/PAT/CN101259122.
|
[8] |
TODEA A, APARASCHIVEI D, BADEA V, et al. Biocatalytic route for the synthesis of oligoesters of hydroxy-fatty acids and ϵ-caprolactone[J]. Biotechnology Journal,2018,13(6):1700629.
|
[9] |
HWANG S H, WAGNER K, XU J, et al. Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids[J]. Bioorganic & Medicinal Chemistry Letters,2017,27(3):620−625.
|
[10] |
LIANG N Y, CAI P, WU D, et al. High-speed counter-current chromatography(HSCCC) purification of antifungal hydroxy unsaturated fatty acids from plant-seed oil and Lactobacillus cultures[J]. Journal of Agricultural and Food Chemistry,2017,65(51):11229−11236. doi: 10.1021/acs.jafc.7b05658
|
[11] |
PROST I, DHONDT S, ROTHE G, et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens[J]. Plant Physiology,2005,139(4):1902−1913. doi: 10.1104/pp.105.066274
|
[12] |
NUANYI L, ALEXANDER K T, SHENG X, et al. Structure-function relationships of antifungal monohydroxy unsaturatedfatty acids(HUFA) of plant and bacterial origin[J]. Food Research International,2020,134:109237. doi: 10.1016/j.foodres.2020.109237
|
[13] |
CHEN Y Y, LIANG N Y, CURTIS J M, et al. Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites[J]. Frontiers in Microbiology,2016,7:1561−1561.
|
[14] |
PARK J Y, LEE S, KIM K, et al. Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus[J]. Journal of Biotechnology,2015,208:1−10. doi: 10.1016/j.jbiotec.2015.05.006
|
[15] |
KIM K, OH H, PARK C, et al. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids[J]. Biotechnology and Bioengineering,2015,112(11):2206−2213. doi: 10.1002/bit.25643
|
[16] |
MOHAMMADI Z, BAZVANDI L, JAFARI F, et al. Echinophorin D a new polyacetylene from an edible plant, Echinophora platyloba aerial parts[J]. Research Journal of Pharmacognosy,2017,4:25.
|
[17] |
CHAUKE N P M H E, NKAZI D B. Chemical modifications of castor oil: A review[J]. Science Progress,2019,102(3):199−217. doi: 10.1177/0036850419859118
|
[18] |
HOU C T. New bioactive fatty acids[J]. Asia Pacific Journal of Clinical Nutrition,2008,17(S1):192−195.
|
[19] |
KISHINO S, TAKEUCHI M, PARK S B, et al. Polyunsaturated fatty acid saturation by gut Lactic acid bacteria affecting host lipid composition[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(44):17808−17813. doi: 10.1073/pnas.1312937110
|
[20] |
TAKATORI T, TERAZAWA K, NAKANO K, et al. Identification of 10-hydroxy-12-octadecenoic acid in adipocere[J]. Forensic Science International,1983,23(2):117−122.
|
[21] |
KIL K S, CUNNINGHAM M W, BARNETT L A. Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens[J]. Infection and Immunity,1994,62(6):2440−2449. doi: 10.1128/iai.62.6.2440-2449.1994
|
[22] |
BERGAMO P, LUONGO D, MIYAMOTO J, et al. Immunomodulatory activity of a gut microbial metabolite of dietary linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, associated with improved antioxidant/detoxifying defences[J]. Journal of Functional Foods,2014,11:192−202. doi: 10.1016/j.jff.2014.10.007
|
[23] |
MIYAMOTO J, MIZUKURE T, PARK S B, et al. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway[J]. Journal of Biological Chemistry,2015,290(5):2902−2918. doi: 10.1074/jbc.M114.610733
|
[24] |
GAO H, YANG B, STANTON C, et al. Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk[J]. Lwt-Food Science and Technology,2020,120:108940. doi: 10.1016/j.lwt.2019.108940
|
[25] |
GAO H, YANG B, STANTON C, et al. Role of 10-hydroxy-cis-12-octadecenic acid in transforming linoleic acid into conjugated linoleic acid by Bifidobacteria[J]. Applied Microbiology and Biotechnology,2019,103(17):7151−7160. doi: 10.1007/s00253-019-09886-w
|
[26] |
HUDSON J A, MORVAN B, JOBLIN K N. Hydration of linoleic acid by bacteria isolated from ruminants[J]. Fems Microbiology Letters,1998,169(2):277−282. doi: 10.1111/j.1574-6968.1998.tb13329.x
|
[27] |
KISHIMOTO N, YAMAMOTO I, TORAISHI K, et al. Two distinct pathways for the formation of hydroxy FA from linoleic acid by Lactic acid bacteria[J]. Lipids,2003,38(12):1269−1274. doi: 10.1007/s11745-003-1188-4
|
[28] |
TAKEUCHI M, KISHINO S, TANABE K, et al. Hydroxy fatty acid production by Pediococcus sp[J]. European Journal of Lipid Science and Technology,2013,115(4):386−393. doi: 10.1002/ejlt.201200414
|
[29] |
BLACK B A, SUN C, ZHAO Y, et al. Antifungal lipids produced by Lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization-MS/MS[J]. Journal of Agricultural and Food Chemistry,2013,61(22):5338−5346. doi: 10.1021/jf400932g
|
[30] |
QUATTRINI M, LIANG N, FORTINA M G, et al. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread[J]. International Journal of Food Microbiology,2019,302:8−14. doi: 10.1016/j.ijfoodmicro.2018.09.007
|
[31] |
SJOGREN J, MAGNUSSON J, BROBERG A, et al. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14[J]. Applied and Environmental Microbiology,2003,69(12):7554−7557. doi: 10.1128/AEM.69.12.7554-7557.2003
|
[32] |
WEBER H P. Fatty acid-derived signals in plants[J]. Trends in Plant Science,2002,7(5):217−224. doi: 10.1016/S1360-1385(02)02250-1
|
[33] |
ASANORI Y, TAKASHI Y, MORIFUMI H, et al. Disease resistance against magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases[J]. Plant & Cell Physiology,2007,9:1263−1274.
|
[34] |
YARA A, YAENO T, MONTILLET J L, et al. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid[J]. Biochemical and Biophysical Research Communications,2008,370(2):344−347. doi: 10.1016/j.bbrc.2008.03.083
|
[35] |
POHL C H, KOCK J L F, THIBANE V S. Antifungal free fatty acids: A review[J]. 2011, 1: 61-71.
|
[36] |
PINTO M E A, ARAUJO S G, MORAIS M I, et al. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils[J]. Anais Da Academia Brasileira De Ciencias,2017,89(3):1671−1681. doi: 10.1590/0001-3765201720160908
|
[37] |
晏石娟, 黄文洁, 刘春明. 脂肪酸及其氧合物对曲霉属真菌菌丝生长、产孢和黄曲霉毒素合成的影响[J]. 微生物学报,2017,57(1):24−32. [YAN S J, HUANG W J, LIU C M. Effects of fatty acids and their oxygenates on mycelial growth, sporulation and aflatoxin synthesis of Aspergillus[J]. Acta Microbiologica Sinica,2017,57(1):24−32.
|
[38] |
SU L, NALLE S C, SHEN L, et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis[J]. Gastroenterology,2013,145(2):407−415. doi: 10.1053/j.gastro.2013.04.011
|
[39] |
GLASS C K, SAIJO K, WINNER B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell,2010,140(6):918−934. doi: 10.1016/j.cell.2010.02.016
|
[40] |
IKEGUCHI S, IZUMI Y, KITAMURA N, et al. Inhibitory effect of the gut microbial linoleic acid metabolites, 10-oxo-trans-11-octadecenoic acid and 10-hydroxy-cis-12-octadecenoic acid, on BV-2 microglial cell activation[J]. Journal of Pharmacological Sciences,2018,138(1):9−15. doi: 10.1016/j.jphs.2018.06.015
|
[41] |
OSTHUES T, SISIGNANO M. Oxidized lipids in persistent pain states[J]. Frontiers in Pharmacology,2019,10:1147. doi: 10.3389/fphar.2019.01147
|
[42] |
KAIKIRI H, MIYAMOTO J, KAWAKAMI T, et al. Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice[J]. International Journal of Food Sciences and Nutrition,2017,68(8):941−951. doi: 10.1080/09637486.2017.1318116
|
[43] |
ENGLEDER M, PICHLER H. On the current role of hydratases in biocatalysis[J]. Applied Microbiology and Biotechnology,2018,102(14):5841−5858. doi: 10.1007/s00253-018-9065-7
|
[44] |
OGAWA J. Hydratase, dehydrogenase, isomerase, and enone reductase involved in fatty acid saturation metabolism[J]. Lipid Modification by Enzymes & Engineered Microbes,2018:119−137.
|
[45] |
VOLKOV A, LIAVONCHANKA A, KAMNEVA O, et al. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence[J]. Journal of Biological Chemistry,2010,285(14):10353−10361. doi: 10.1074/jbc.M109.081851
|
[46] |
ROSSON R A, DENG M-D, GRUND A D. Linoleate isomerase: US 20050003383[P]. 2004-09-01[2020-11-21]. http://europepmc.org/article/PAT/US2005003383.
|
[47] |
YANG B, GAO H, STANTON C, et al. Bacterial conjugated linoleic acid production and their applications[J]. Prog Lipid Res,2017,68:26−36. doi: 10.1016/j.plipres.2017.09.002
|
[48] |
KISHINO S, OGAWA J, YOKOZEKI K, et al. Linoleic acid isomerase in Lactobacillus plantarum AKU1009a proved to be a multi-component enzyme system requiring oxidoreduction cofactors[J]. Bioscience, Biotechnology, and Biochemistry,2011,75(2):318−322. doi: 10.1271/bbb.100699
|
[49] |
YANG B, CHEN H, SONG Y, et al. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases[J]. Biotechnology Letters,2013,35(1):75−81. doi: 10.1007/s10529-012-1044-y
|
[50] |
VOLKOV A, KHOSHNEVIS S, NEUMANN P, et al. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus[J]. Acta Crystallographica Section D-biological Crystallography,2013,69(4):648−657. doi: 10.1107/S0907444913000991
|
[51] |
OH H, KIM S, SONG J, et al. Biotransformation of linoleic acid into hydroxy fatty acids and carboxylic acids using a linoleate double bond hydratase as key enzyme[J]. Advanced Synthesis & Catalysis,2015,357:408−416.
|
[52] |
SIM D, SHIN K, OH D. 13-hydroxy-9Z, 11E-octadecadienoic acid production by recombinant cells expressing Burkholderia thailandensis 13-Lipoxygenase[J]. Journal of the American Oil Chemists’ Society,2015,92(9):1259−1266. doi: 10.1007/s11746-015-2694-4
|
[53] |
杨波. 乳酸菌生物转化共轭亚油酸的研究[D]. 无锡: 江南大学, 2014.
YANG B. Study on bioconversion of conjugated linoleic acid by lactic acid bacteria[D]. Wuxi: Jiangnan University, 2014.
|
[54] |
CHOI J, SEO M, LEE K, et al. Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants[J]. Biotechnology and Bioprocess Engineering,2017,22(6):709−716. doi: 10.1007/s12257-017-0374-y
|
[55] |
KERENKAN A E, B LAND F, DO T O. Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: A review and perspective[J]. Catalysis Science & Technology,2016,6(4):971−987.
|
1. |
方诗会,熊尧,张召,林俊芳,陈涛,郭丽琼. 副干酪乳杆菌Lp.R3的高密度培养工艺优化. 食品工业科技. 2025(09): 196-205 .
![]() | |
2. |
郑超,侯信哲,陈天花,刘彩丽,朱宗河,徐雅芫,周可金,张付贵. 乳酸菌在蔬菜发酵中的作用机制研究进展. 中国调味品. 2024(08): 205-210 .
![]() | |
3. |
王超凡,王慧慧,胡世伟,赵华,张朝正. 鼠李糖乳杆菌TCCC 10035的培养条件优化. 饲料研究. 2024(22): 116-122 .
![]() | |
4. |
蒋大成,郝沛研,程文,李潘贤,方曙光. 发酵食品中乳酸菌的作用探讨. 食品安全导刊. 2023(07): 99-101 .
![]() | |
5. |
谢佳琪,赵洁. 发酵乳中乳酸菌菌株间互作机制及其对产品特性影响的研究进展. 食品工业科技. 2023(17): 1-7 .
![]() | |
6. |
刘福东,桑跃,葛绍阳. 乳双歧杆菌BL-99高密度发酵培养工艺的优化研究. 中国奶牛. 2023(12): 32-36 .
![]() |