PENG Shuyue, LIANG Nuanyi, ZHANG Yanzhen, et al. Research Progress in Biosynthesis of Microbial Hydroxyl Unsaturated Fatty Acids by Linoleic Acid Hydratase[J]. Science and Technology of Food Industry, 2021, 42(22): 449−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100119.
Citation: PENG Shuyue, LIANG Nuanyi, ZHANG Yanzhen, et al. Research Progress in Biosynthesis of Microbial Hydroxyl Unsaturated Fatty Acids by Linoleic Acid Hydratase[J]. Science and Technology of Food Industry, 2021, 42(22): 449−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100119.

Research Progress in Biosynthesis of Microbial Hydroxyl Unsaturated Fatty Acids by Linoleic Acid Hydratase

More Information
  • Received Date: October 15, 2020
  • Available Online: August 30, 2021
  • Emerging studies have shown the important bioactivities of hydroxy unsaturated fatty acids(HUFA). The bioproduction of HUFAs is highly specific and environmentally friendly, which has become one of the main preparation methods of HUFA. The sources, functions and applications of two most studied microbial HUFAs, namely 10-hydroxy-12-octadecenoic acid(10-HOE) and 13-hydroxy-9-octadecenoic acid(13-HOE), are first discussed. Then, the research progress of linoleic acid hydratases(LHT), one type of microbial enzymes responsible for the synthesis of 10-HOE and 13-HOE, is reviewed. Finally, the further researches of the bioactivities and biosynthesis of HUFA are proposed, in which the bioconversion efficiency of HUFA with LHT can be improved based on the theory of colloid and interface chemistry.
  • [1]
    BLACK B A, ZANNINI E, CURTIS J M, et al. Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread[J]. Applied and Environmental Microbiology,2013,79(6):1866−1873. doi: 10.1128/AEM.03784-12
    [2]
    SHAHZADI A. Bio-transformation of fatty acids[D]. Edmonton: University of Alberta, 2012: 10−77.
    [3]
    PABIŚ S, KULA J. Synthesis and bioactivity of (r)-ricinoleic acid derivatives: A review[J]. Current Medicinal Chemistry,2016,23(35):4037−4056. doi: 10.2174/0929867323666160627104453
    [4]
    VENKAT V, VENKATESH S, FIONA C, et al. 9- and 13-HODE regulate fatty acid binding protein-4 in human macrophages, but does not involve HODE/GPR132 axis in PPAR-γ regulation of FABP4[J]. Therapeutic Advances in Endocrinology & Metabolism,2018,9(5):137−150.
    [5]
    NIEMAN D C, MEANEY M P, JOHN C S, et al. 9- and 13-hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2 h running[J]. Brain Behavior & Immunity,2016,56:246−252.
    [6]
    MARWAT S K, REHMAN F U, KHAN E A, et al. Review-ricinus cmmunis-ethnomedicinal uses and pharmacological activities[J]. Pakistan Journal of Pharmaceutical Sciences,2017,30(5):1815.
    [7]
    ESCRIBA R P V C. Use of hydroxyoleic acid and similar compounds in the production of medicaments: CN 20081091794[P]. 2002-10-09[2020-11-21]. http://europepmc.org/article/PAT/CN101259122.
    [8]
    TODEA A, APARASCHIVEI D, BADEA V, et al. Biocatalytic route for the synthesis of oligoesters of hydroxy-fatty acids and ϵ-caprolactone[J]. Biotechnology Journal,2018,13(6):1700629.
    [9]
    HWANG S H, WAGNER K, XU J, et al. Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids[J]. Bioorganic & Medicinal Chemistry Letters,2017,27(3):620−625.
    [10]
    LIANG N Y, CAI P, WU D, et al. High-speed counter-current chromatography(HSCCC) purification of antifungal hydroxy unsaturated fatty acids from plant-seed oil and Lactobacillus cultures[J]. Journal of Agricultural and Food Chemistry,2017,65(51):11229−11236. doi: 10.1021/acs.jafc.7b05658
    [11]
    PROST I, DHONDT S, ROTHE G, et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens[J]. Plant Physiology,2005,139(4):1902−1913. doi: 10.1104/pp.105.066274
    [12]
    NUANYI L, ALEXANDER K T, SHENG X, et al. Structure-function relationships of antifungal monohydroxy unsaturatedfatty acids(HUFA) of plant and bacterial origin[J]. Food Research International,2020,134:109237. doi: 10.1016/j.foodres.2020.109237
    [13]
    CHEN Y Y, LIANG N Y, CURTIS J M, et al. Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites[J]. Frontiers in Microbiology,2016,7:1561−1561.
    [14]
    PARK J Y, LEE S, KIM K, et al. Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus[J]. Journal of Biotechnology,2015,208:1−10. doi: 10.1016/j.jbiotec.2015.05.006
    [15]
    KIM K, OH H, PARK C, et al. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids[J]. Biotechnology and Bioengineering,2015,112(11):2206−2213. doi: 10.1002/bit.25643
    [16]
    MOHAMMADI Z, BAZVANDI L, JAFARI F, et al. Echinophorin D a new polyacetylene from an edible plant, Echinophora platyloba aerial parts[J]. Research Journal of Pharmacognosy,2017,4:25.
    [17]
    CHAUKE N P M H E, NKAZI D B. Chemical modifications of castor oil: A review[J]. Science Progress,2019,102(3):199−217. doi: 10.1177/0036850419859118
    [18]
    HOU C T. New bioactive fatty acids[J]. Asia Pacific Journal of Clinical Nutrition,2008,17(S1):192−195.
    [19]
    KISHINO S, TAKEUCHI M, PARK S B, et al. Polyunsaturated fatty acid saturation by gut Lactic acid bacteria affecting host lipid composition[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(44):17808−17813. doi: 10.1073/pnas.1312937110
    [20]
    TAKATORI T, TERAZAWA K, NAKANO K, et al. Identification of 10-hydroxy-12-octadecenoic acid in adipocere[J]. Forensic Science International,1983,23(2):117−122.
    [21]
    KIL K S, CUNNINGHAM M W, BARNETT L A. Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens[J]. Infection and Immunity,1994,62(6):2440−2449. doi: 10.1128/iai.62.6.2440-2449.1994
    [22]
    BERGAMO P, LUONGO D, MIYAMOTO J, et al. Immunomodulatory activity of a gut microbial metabolite of dietary linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, associated with improved antioxidant/detoxifying defences[J]. Journal of Functional Foods,2014,11:192−202. doi: 10.1016/j.jff.2014.10.007
    [23]
    MIYAMOTO J, MIZUKURE T, PARK S B, et al. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway[J]. Journal of Biological Chemistry,2015,290(5):2902−2918. doi: 10.1074/jbc.M114.610733
    [24]
    GAO H, YANG B, STANTON C, et al. Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk[J]. Lwt-Food Science and Technology,2020,120:108940. doi: 10.1016/j.lwt.2019.108940
    [25]
    GAO H, YANG B, STANTON C, et al. Role of 10-hydroxy-cis-12-octadecenic acid in transforming linoleic acid into conjugated linoleic acid by Bifidobacteria[J]. Applied Microbiology and Biotechnology,2019,103(17):7151−7160. doi: 10.1007/s00253-019-09886-w
    [26]
    HUDSON J A, MORVAN B, JOBLIN K N. Hydration of linoleic acid by bacteria isolated from ruminants[J]. Fems Microbiology Letters,1998,169(2):277−282. doi: 10.1111/j.1574-6968.1998.tb13329.x
    [27]
    KISHIMOTO N, YAMAMOTO I, TORAISHI K, et al. Two distinct pathways for the formation of hydroxy FA from linoleic acid by Lactic acid bacteria[J]. Lipids,2003,38(12):1269−1274. doi: 10.1007/s11745-003-1188-4
    [28]
    TAKEUCHI M, KISHINO S, TANABE K, et al. Hydroxy fatty acid production by Pediococcus sp[J]. European Journal of Lipid Science and Technology,2013,115(4):386−393. doi: 10.1002/ejlt.201200414
    [29]
    BLACK B A, SUN C, ZHAO Y, et al. Antifungal lipids produced by Lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization-MS/MS[J]. Journal of Agricultural and Food Chemistry,2013,61(22):5338−5346. doi: 10.1021/jf400932g
    [30]
    QUATTRINI M, LIANG N, FORTINA M G, et al. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread[J]. International Journal of Food Microbiology,2019,302:8−14. doi: 10.1016/j.ijfoodmicro.2018.09.007
    [31]
    SJOGREN J, MAGNUSSON J, BROBERG A, et al. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14[J]. Applied and Environmental Microbiology,2003,69(12):7554−7557. doi: 10.1128/AEM.69.12.7554-7557.2003
    [32]
    WEBER H P. Fatty acid-derived signals in plants[J]. Trends in Plant Science,2002,7(5):217−224. doi: 10.1016/S1360-1385(02)02250-1
    [33]
    ASANORI Y, TAKASHI Y, MORIFUMI H, et al. Disease resistance against magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases[J]. Plant & Cell Physiology,2007,9:1263−1274.
    [34]
    YARA A, YAENO T, MONTILLET J L, et al. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid[J]. Biochemical and Biophysical Research Communications,2008,370(2):344−347. doi: 10.1016/j.bbrc.2008.03.083
    [35]
    POHL C H, KOCK J L F, THIBANE V S. Antifungal free fatty acids: A review[J]. 2011, 1: 61-71.
    [36]
    PINTO M E A, ARAUJO S G, MORAIS M I, et al. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils[J]. Anais Da Academia Brasileira De Ciencias,2017,89(3):1671−1681. doi: 10.1590/0001-3765201720160908
    [37]
    晏石娟, 黄文洁, 刘春明. 脂肪酸及其氧合物对曲霉属真菌菌丝生长、产孢和黄曲霉毒素合成的影响[J]. 微生物学报,2017,57(1):24−32. [YAN S J, HUANG W J, LIU C M. Effects of fatty acids and their oxygenates on mycelial growth, sporulation and aflatoxin synthesis of Aspergillus[J]. Acta Microbiologica Sinica,2017,57(1):24−32.
    [38]
    SU L, NALLE S C, SHEN L, et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis[J]. Gastroenterology,2013,145(2):407−415. doi: 10.1053/j.gastro.2013.04.011
    [39]
    GLASS C K, SAIJO K, WINNER B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell,2010,140(6):918−934. doi: 10.1016/j.cell.2010.02.016
    [40]
    IKEGUCHI S, IZUMI Y, KITAMURA N, et al. Inhibitory effect of the gut microbial linoleic acid metabolites, 10-oxo-trans-11-octadecenoic acid and 10-hydroxy-cis-12-octadecenoic acid, on BV-2 microglial cell activation[J]. Journal of Pharmacological Sciences,2018,138(1):9−15. doi: 10.1016/j.jphs.2018.06.015
    [41]
    OSTHUES T, SISIGNANO M. Oxidized lipids in persistent pain states[J]. Frontiers in Pharmacology,2019,10:1147. doi: 10.3389/fphar.2019.01147
    [42]
    KAIKIRI H, MIYAMOTO J, KAWAKAMI T, et al. Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice[J]. International Journal of Food Sciences and Nutrition,2017,68(8):941−951. doi: 10.1080/09637486.2017.1318116
    [43]
    ENGLEDER M, PICHLER H. On the current role of hydratases in biocatalysis[J]. Applied Microbiology and Biotechnology,2018,102(14):5841−5858. doi: 10.1007/s00253-018-9065-7
    [44]
    OGAWA J. Hydratase, dehydrogenase, isomerase, and enone reductase involved in fatty acid saturation metabolism[J]. Lipid Modification by Enzymes & Engineered Microbes,2018:119−137.
    [45]
    VOLKOV A, LIAVONCHANKA A, KAMNEVA O, et al. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence[J]. Journal of Biological Chemistry,2010,285(14):10353−10361. doi: 10.1074/jbc.M109.081851
    [46]
    ROSSON R A, DENG M-D, GRUND A D. Linoleate isomerase: US 20050003383[P]. 2004-09-01[2020-11-21]. http://europepmc.org/article/PAT/US2005003383.
    [47]
    YANG B, GAO H, STANTON C, et al. Bacterial conjugated linoleic acid production and their applications[J]. Prog Lipid Res,2017,68:26−36. doi: 10.1016/j.plipres.2017.09.002
    [48]
    KISHINO S, OGAWA J, YOKOZEKI K, et al. Linoleic acid isomerase in Lactobacillus plantarum AKU1009a proved to be a multi-component enzyme system requiring oxidoreduction cofactors[J]. Bioscience, Biotechnology, and Biochemistry,2011,75(2):318−322. doi: 10.1271/bbb.100699
    [49]
    YANG B, CHEN H, SONG Y, et al. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases[J]. Biotechnology Letters,2013,35(1):75−81. doi: 10.1007/s10529-012-1044-y
    [50]
    VOLKOV A, KHOSHNEVIS S, NEUMANN P, et al. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus[J]. Acta Crystallographica Section D-biological Crystallography,2013,69(4):648−657. doi: 10.1107/S0907444913000991
    [51]
    OH H, KIM S, SONG J, et al. Biotransformation of linoleic acid into hydroxy fatty acids and carboxylic acids using a linoleate double bond hydratase as key enzyme[J]. Advanced Synthesis & Catalysis,2015,357:408−416.
    [52]
    SIM D, SHIN K, OH D. 13-hydroxy-9Z, 11E-octadecadienoic acid production by recombinant cells expressing Burkholderia thailandensis 13-Lipoxygenase[J]. Journal of the American Oil Chemists’ Society,2015,92(9):1259−1266. doi: 10.1007/s11746-015-2694-4
    [53]
    杨波. 乳酸菌生物转化共轭亚油酸的研究[D]. 无锡: 江南大学, 2014.

    YANG B. Study on bioconversion of conjugated linoleic acid by lactic acid bacteria[D]. Wuxi: Jiangnan University, 2014.
    [54]
    CHOI J, SEO M, LEE K, et al. Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants[J]. Biotechnology and Bioprocess Engineering,2017,22(6):709−716. doi: 10.1007/s12257-017-0374-y
    [55]
    KERENKAN A E, B LAND F, DO T O. Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: A review and perspective[J]. Catalysis Science & Technology,2016,6(4):971−987.
  • Cited by

    Periodical cited type(6)

    1. 方诗会,熊尧,张召,林俊芳,陈涛,郭丽琼. 副干酪乳杆菌Lp.R3的高密度培养工艺优化. 食品工业科技. 2025(09): 196-205 . 本站查看
    2. 郑超,侯信哲,陈天花,刘彩丽,朱宗河,徐雅芫,周可金,张付贵. 乳酸菌在蔬菜发酵中的作用机制研究进展. 中国调味品. 2024(08): 205-210 .
    3. 王超凡,王慧慧,胡世伟,赵华,张朝正. 鼠李糖乳杆菌TCCC 10035的培养条件优化. 饲料研究. 2024(22): 116-122 .
    4. 蒋大成,郝沛研,程文,李潘贤,方曙光. 发酵食品中乳酸菌的作用探讨. 食品安全导刊. 2023(07): 99-101 .
    5. 谢佳琪,赵洁. 发酵乳中乳酸菌菌株间互作机制及其对产品特性影响的研究进展. 食品工业科技. 2023(17): 1-7 . 本站查看
    6. 刘福东,桑跃,葛绍阳. 乳双歧杆菌BL-99高密度发酵培养工艺的优化研究. 中国奶牛. 2023(12): 32-36 .

    Other cited types(22)

Catalog

    Article Metrics

    Article views (432) PDF downloads (46) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return