Citation: | ZHAO Ying, YANG Xinyu, ZHAO Xiaodan, et al. Research Progress on Regulation of Plant Flavonoids Biosynthesis[J]. Science and Technology of Food Industry, 2021, 42(21): 454−463. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100095. |
[1] |
张学明, 齐晓光, 陈玉波, 等. 草莓类黄酮化合物的研究进展[J]. 北方园艺,2020(1):128−133. [ZHANG X M, QI X G, CHEN Y B, et al. Research advances of flavonoids in strawberry[J]. Northern Horticulture,2020(1):128−133.
|
[2] |
乔小燕, 马春雷, 陈亮. 植物类黄酮生物合成途径及重要基因的调控[J]. 天然产物研究与开发,2009,21(2):354−360. [QIAO X Y, MA C L, CHEN L. Plant flavonoid biosynthesis pathway and regulation of its important genes[J]. Natural Product Research and Development,2009,21(2):354−360. doi: 10.3969/j.issn.1001-6880.2009.02.040
|
[3] |
郭欣慰, 黄丛林, 吴忠义, 等. 植物类黄酮生物合成的分子调控[J]. 北方园艺,2011,1(4):204−207. [GUO X W, HUANG C L, WU Z Y, et al. Molecular regulation of plant flavonoid biosynthesis pathhway[J]. Northern Horticulture,2011,1(4):204−207.
|
[4] |
周明, 沈勇根, 朱丽琴, 等. 植物黄酮化合物生物合成、积累及调控的研究进展[J]. 食品研究与开发,2016,37(18):216−221. [ZHOU M, SHEN Y G, ZHU L Q, et al. Research progress on biosynthesis, accumulation and regulation of flavonoids in plants[J]. Food Research and Development,2016,37(18):216−221. doi: 10.3969/j.issn.1005-6521.2016.18.052
|
[5] |
XU W J, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,2015,20(3):176−185. doi: 10.1016/j.tplants.2014.12.001
|
[6] |
邢文, 金晓玲. 调控植物类黄酮生物合成的MYB转录因子研究进展[J]. 分子植物育种,2015,13(3):689−696. [XING W, JIN X L. Recent advances of MYB transcription factors involved in the regulation of flavonoid biosynthesis[J]. Molecular Plant Breeding,2015,13(3):689−696.
|
[7] |
AVANTIKA PANDEY S B A. Ultraviolet-B radiation a potent regulator of flavonoids biosynthesis, accumulation and functions in plants[J]. Current Science,2020,119(2):176−185.
|
[8] |
KARPPINEN K, ZORATTI L, NGUYENQUYNH N, et al. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. Berries[J]. Frontiers in Plant Science,2016,7:655.
|
[9] |
魏永赞, 李伟才, 董晨, 等. 光照对植物花色素苷生物合成的调控及机制[J]. 植物生理学报,2017,53(9):1577−1585. [WEI Y Z, LI W C, DONG C, et al. Regulation and mechanism of light on anthocyanin biosynthesis in plants[J]. Plant Physiology Journal,2017,53(9):1577−1585.
|
[10] |
ZORATTI L, JAAKOLA L, HÄGGMAN H, et al. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps[J]. Journal of Agricultural and Food Chemistry,2015,63(39):8641−8650. doi: 10.1021/acs.jafc.5b02833
|
[11] |
ALBERT N W, LEWIS D H, ZHANG H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia[J]. Journal of Experimental Botany,2009,60(7):2191−2202. doi: 10.1093/jxb/erp097
|
[12] |
MATUS J T, LOYOLA R, VEGA A, et al. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera[J]. Journal of Experimental Botany,2009,60(3):853−867. doi: 10.1093/jxb/ern336
|
[13] |
GUAN L, DAI Z, WU B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries[J]. Planta,2016,243(1):23−41. doi: 10.1007/s00425-015-2391-4
|
[14] |
XU Y, WANG G, CAO F, et al. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.)[J]. New Forests,2014,45(6):765−776. doi: 10.1007/s11056-014-9435-7
|
[15] |
AZUMA A, YAKUSHIJI H, KOSHITA Y, et al. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions[J]. Planta,2012,236(4):1067−1080. doi: 10.1007/s00425-012-1650-x
|
[16] |
KIM S, HWANG G, LEE S, et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5[J]. Frontiers in Plant Science,2017,8:1787. doi: 10.3389/fpls.2017.01787
|
[17] |
WANG G, CAO F L, CHANG L, et al. Temperature has more effects than soil moisture on biosynthesis of flavonoids in Ginkgo (Ginkgo biloba L.) leaves[J]. New Forests,2014,45(6):797−812. doi: 10.1007/s11056-014-9437-5
|
[18] |
BROSSA R, CASALS I, PINTÓ-MARIJUAN M, et al. Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation[J]. Trees,2008,23(2):401−408.
|
[19] |
YU M, MAN Y P, C W Y. Light and temperature-induced expression of an R2R3-MYB gene regulates anthocyanin biosynthesis in red-fleshed Kiwifruit[J]. International Journal of Molecular Sciences,2019,20(20):5228. doi: 10.3390/ijms20205228
|
[20] |
BHATIA C, PANDEY A, GADDAM S R, et al. Low Temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thaliana[J]. Plant and Cell Physiology,2018,59(10):2099−2112. doi: 10.1093/pcp/pcy132
|
[21] |
WANG N, QU C, JIANG S H, et al. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples[J]. The Plant Journal,2018,96(1):39−55. doi: 10.1111/tpj.14013
|
[22] |
常丽. 温度和土壤水分对银杏叶类黄酮合成的影响[D]. 南京: 南京林业大学, 2013.
CHANG L. Responses of flavonoid synthesis in Ginkgo leaves to temperature and soil moisture[D]. Nanjing: Nanjing Forestry University, 2013.
|
[23] |
孙利. 不同花生品种类黄酮积累及其合成酶活性对干旱胁迫的响应[D]. 泰安: 山东农业大学, 2013.
SUN L. Response on the accumulation of flavonoids and synthetase activities among different peanut cultivars to drought stress[D]. Taian: Shandong Agricultural University, 2013.
|
[24] |
CUI Z H, BI W L, HAO X Y, et al. Drought stress enhances up-regulation of anthocyanin biosynthesis in Grapevine leafroll-associated virus 3-Infected in vitro Grapevine (Vitis vinifera) Leaves[J]. Plant Disease,2017,101(9):1606−1615. doi: 10.1094/PDIS-01-17-0104-RE
|
[25] |
LI P, LI Y J, ZHANG F J, et al. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J]. The Plant Journal,2017,89(1):85−103. doi: 10.1111/tpj.13324
|
[26] |
谢岳. 水分胁迫对赤霞珠葡萄花色苷含量及花色苷合成相关基因表达的影响[D]. 银川: 宁夏大学, 2018.
XIE Y. Effects of water stress on content of anthocyanin and expression of genes associated with anthocyanin synthesis in cabernet sauvignon grape[D]. Yinchuan: Ningxia University, 2018.
|
[27] |
莫运才, 曾令杰, 黄涵, 等. UV-B辐射对铁皮石斛叶片光合色素、类黄酮及PAL酶活性的影响[J]. 贵州农业科学, 2015, 43(7): 34−37.
MO Y C, ZENG L J, HUANG H, et al. Effects of UV-B radiation on photosynthetic pigments, flavonoids and PAL activity in Dendrobium officinale[D]. Guizhou Agricultural Sciences, 2015, 43(7): 34−37.
|
[28] |
HENRY-KIRK R A, PLUNKETT B, HALL M, et al. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica)[J]. Plant Cell & Environment,2018,41(3):675−688.
|
[29] |
YANG J F, SHI W J, LI B B, et al. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries(Vaccinium corymbosum L.)[J]. Food Chemistry,2019,301:125248. doi: 10.1016/j.foodchem.2019.125248
|
[30] |
沈欣杰. ABA介导的PacMYBA调控红肉甜樱桃果实花色苷合成的研究[D]. 北京: 中国农业大学, 2014.
SHEN X J. Studies on the role of PacMYBA in ABA-regulated anthocyainin biosynthesis in red-colored sweet cherry fruit[D]. Beijing: China Agricultural University, 2014.
|
[31] |
李栋栋. 脱落酸调控草莓果实成熟的分子机理和关键miRNA调控因子的探究[D]. 杭州: 浙江大学, 2019.
LI D D. The mechanism of abscisic acid-regulated strawberry fruit ripening and identification of key miRNAs involved[D]. Hangzhou: Zhejiang University, 2019.
|
[32] |
刘生财, 潘君飞, 王晓, 等. MeJA对苋菜悬浮细胞类黄酮和类胡萝卜素累积及其代谢相关基因表达的影响[J]. 应用与环境生物学报,2019,25(5):1168−1175. [LIU S C, PAN J F, WANG X, et al. Effects of methyl jasmonate on the contents and related metabolic genes of flavonoids and carotenoids in suspension cells of Amaranthus tricolor L[J]. Chinese Journal of Applied and Environmental Biology,2019,25(5):1168−1175.
|
[33] |
LI Y L, CHEN X L, WANG J Q, et al. Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch[J]. Public Library of Science,2020,15(7):e0236565.
|
[34] |
GONZALEZ-VILLAGRA J, COHEN J D, REYES-DIAZ M M. Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress[J]. Physiologia Plantarum,2019,165(4):855−866. doi: 10.1111/ppl.12789
|
[35] |
YANG M Y, WANG L, BELWAL T, et al. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in Grape Berry of Vitis vinifera cv. Kyoho[J]. Molecules,2019,25(1):12. doi: 10.3390/molecules25010012
|
[36] |
JIA H F, CHAI Y M, LI C L, et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening[J]. Plant Physiology,2011,157(1):188−199. doi: 10.1104/pp.111.177311
|
[37] |
LIU W, ZHU D W, LIU D H, et al. Comparative metabolic activity related to flavonoid synthesis in leaves and flowers of Chrysanthemum morifolium in response to K deficiency[J]. Plant and Soil,2010,335(1-2):325−337. doi: 10.1007/s11104-010-0421-3
|
[38] |
LEA U S, SLIMESTAD R, SMEDVIG P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta,2007,225(5):1245−1253. doi: 10.1007/s00425-006-0414-x
|
[39] |
DONG F, HU J H, SHI Y Z, et al. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis)[J]. Plant Physiology and Biochemistry,2019,138:48−57. doi: 10.1016/j.plaphy.2019.02.017
|
[40] |
YU J, ZHU M T, WANG M J, et al. Transcriptome analysis of calcium-induced accumulation of anthocyanins in grape skin[J]. Scientia Horticulturae,2020,260:108871. doi: 10.1016/j.scienta.2019.108871
|
[41] |
XU W P, PENG H, YANG T B, et al. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J]. Plant Physiology and Biochemistry,2014,82:289−298. doi: 10.1016/j.plaphy.2014.06.015
|
[42] |
JIA H F, WANG J A, YANG Y F, et al. Changes in flavonol content and transcript levels of genes in the flavonoid pathway in tobacco under phosphorus deficiency[J]. Plant Growth Regulation,2015,76(2):225−231. doi: 10.1007/s10725-014-9990-0
|
[43] |
周锈连. 缺磷诱导拟南芥花青素合成积累的蛋白质组研究[D]. 杭州: 杭州师范大学, 2019.
ZHOU X L. Phosphate deficiency induces anthocyanin biosynthesis and accumulation on proteome research in Arabidopsis thaliana[D]. Hangzhou: Hangzhou Normal University, 2019.
|
[44] |
GAO G Y, WU X F, ZHANG D W, et al. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway[J]. Biotechnology Bulletin,2020,36(1):126−134.
|
[45] |
宋建辉, 郭长奎, 石敏. 植物花青素生物合成及调控[J]. 分子植物育种,2021,19(11):3612−3620. [SONG J H, GUO C K, SHI M. Anthocyanin biosynthesis and transcriptional regulation in plant[J]. Molecular Plant Breeding,2021,19(11):3612−3620.
|
[46] |
宋雪薇, 魏解冰, 狄少康, 等. 花青素转录因子调控机制及代谢工程研究进展[J]. 植物学报,2019,54(1):133−156. [SONG X W, WEI J B, DI S K, et al. Recent advances in the regulation mechanism of transcription factors and metabolic engineering of anthocyanins[J]. Chinese Bulletin of Botany,2019,54(1):133−156. doi: 10.11983/CBB18016
|
[47] |
ANWAR M, YU W J, YAO H, et al. NtMYB3, an R2R3-MYB from Narcissus, regulates flavonoid biosynthesis[J]. International Journal of Molecular Sciences,2019,20(21):5456. doi: 10.3390/ijms20215456
|
[48] |
ZHAI R, WANG Z, ZHANG S, et al. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.)[J]. Journal of Experimental Botany,2016,67(5):1275−1284. doi: 10.1093/jxb/erv524
|
[49] |
VIMOLMANGKANG S, HAN Y P, WEI G C, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development[J]. BMC Plant Biology,2013,13(1):176. doi: 10.1186/1471-2229-13-176
|
[50] |
ANWAR M, WANG G Q, WU J C, et al. Ectopic overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese narcissus represses anthocyanin biosynthesis in Tobacco[J]. Molecules,2018,23(4):781. doi: 10.3390/molecules23040781
|
[51] |
ZHU L, GUAN Y X, ZHANG Z H, et al. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum[J]. Plant Physiology and Biochemistry,2020,149:217−224. doi: 10.1016/j.plaphy.2020.02.010
|
[52] |
LI Y Q, SHAN X T, ZHOU L D, et al. The R2R3-MYB factor FhMYB5 from Freesia hybrida contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis[J]. Frontiers in Plant Science,2018,9:1935.
|
[53] |
TIAN J, ZHANG J, HAN Z Y, et al. McMYB12 Transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus Crabapple[J]. Scientific Reports,2017,7:43715. doi: 10.1038/srep43715
|
[54] |
ZHAO P C, LI X X, JIA J T, et al. BHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy[J]. Journal of Experimental Botany,2019,70(1):269−284. doi: 10.1093/jxb/ery335
|
[55] |
ZHAO Y, ZHANG Y Y, LIU H, et al. Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis[J]. BMC Plant Biology,2019,19(1):497. doi: 10.1186/s12870-019-2109-z
|
[56] |
DENG C Y, WANG J Y, LU C F, et al. CcMYB6-1 and CcbHLH1, two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis in cornflower[J]. Plant Physiology and Biochemistry,2020,151:271−283. doi: 10.1016/j.plaphy.2020.03.024
|
[57] |
WANG F B, ZHU H, CHEN D H, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture,2016,125(2):387−398. doi: 10.1007/s11240-016-0953-1
|
[58] |
XU H F, WANG N, LIU J X, et al. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes[J]. Plant Molecular Biology,2017,94(1-2):149−165. doi: 10.1007/s11103-017-0601-0
|
[59] |
姚攀锋. 苦荞WD40转录因子的基因克隆及其对花青素合成的影响[D]. 雅安: 四川农业大学, 2016.
YAO P F. Characterization of tartary buckwheat WD40 transcription factor and its regulation of anthocyanin biosynthesis[D]. Yaan: Sichuan Agricultural University, 2016.
|
[60] |
LIU Z, LIU Y H, COULTER J A, et al. The WD40 gene family in Potato (Solanum Tuberosum L.): Genome-wide analysis and identification of anthocyanin and drought-related WD40s[J]. Agronomy,2020,10(3):401. doi: 10.3390/agronomy10030401
|
[61] |
AN X H, TIAN Y, CHEN K Q, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Journal of Plant Physiology,2012,169(7):710−717. doi: 10.1016/j.jplph.2012.01.015
|
[62] |
陈 倩, 游双梅, 邢乐华, 等. 果树NAC转录因子的研究进展[J/OL]. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20200918.1316.007.html.
CHEN Q, YOU S M, XING L H, et al. Research progress of nac transcription factors in fruit trees[J/OL]. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20200918.1316.007.html.
|
[63] |
SUN Q G, JIANG S H, ZHANG T L, et al. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11[J]. Plant Science,2019,289:110286. doi: 10.1016/j.plantsci.2019.110286
|
[64] |
JIANG G X, LI Z W, SONG Y B, et al. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes duringLitchi Fruit Ripening[J]. Biomolecules,2019,9(4):135. doi: 10.3390/biom9040135
|
[65] |
H J Y, H L C, D. Y, et al. Y, et al. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar 'Granny Smith'[J]. Journal of Experimental Botany,2017,68(5):1055−1069. doi: 10.1093/jxb/erx029
|
[66] |
SHI H T, LIU G Y, WEI Y X, et al. The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis[J]. Plant Molecular Biology,2018,97(1-2):165−176. doi: 10.1007/s11103-018-0730-0
|
[1] | GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286 |
[2] | LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282 |
[3] | ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356 |
[4] | LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101 |
[5] | DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233 |
[6] | ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042 |
[7] | MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002 |
[8] | SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037 |
[9] | LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017 |
[10] | SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029 |
1. |
夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
![]() | |
2. |
李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 .
![]() | |
3. |
杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
![]() | |
4. |
符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
![]() | |
5. |
侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
![]() | |
6. |
张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
![]() | |
7. |
吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
![]() | |
8. |
赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 .
![]() | |
9. |
樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
![]() | |
10. |
董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .
![]() |