CHEN Yanjun, LIU Jiahong, ZHANG Xiang, et al. Metabolic Regulation and Mechanism of Multi-Component Resistant Starch on High-Sugar and High-Fat Model Mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357−362. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100085.
Citation: CHEN Yanjun, LIU Jiahong, ZHANG Xiang, et al. Metabolic Regulation and Mechanism of Multi-Component Resistant Starch on High-Sugar and High-Fat Model Mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357−362. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100085.

Metabolic Regulation and Mechanism of Multi-Component Resistant Starch on High-Sugar and High-Fat Model Mice

More Information
  • Received Date: October 13, 2020
  • Available Online: August 01, 2021
  • Objective: To investigate the effect and mechanism of multiple composite resistant starch (RS) on glucose and lipid metabolism in high-sugar and high-fat model mice. Methods: The mice were divided into six groups, namely the normal control group, the high-sugar and high-fat model group, the positive control group and multiple composite RS low dose group, multiple composite RS middle dose group, multiple composite RS high dose group. The effects of multiple complex RS on body mass, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-C), liver glycogen in high-glycemic and high-fat mice and the influence of short chain fatty acids (SCFAs) in intestinal contents. Results: RS high dose group compared with the mice in the model control group, the body mass, blood glucose, TC, and TG in the serum of mice in the multiple composite RS group were significantly decreased by 9.23%, 59.71%, 31.22%, and 36.72%, respectively, and HDL-C was significantly increased by 58.93%; the content of liver glycogen was positively correlated with the dose of multiple composite RS, and the content of liver glycogen increased significantly by 207.86%. The contents of acetic acid, propionic acid and butyric acid in the intestines increased significantly. Conclusion: The multiple compound RS can reduce the blood sugar level of high-sugar and high-fat model mice, increase the content of acetic acid, propionic acid and butyric acid in the intestine.
  • [1]
    Raj S Padwal, Arya M Sharma. Prevention of cardiovascular disease: Obesity, diabetes and the metabolic syndrome[J]. Canadian Journal of Cardiology,2010,26:18−20. doi: 10.1016/S0828-282X(10)71077-1
    [2]
    闫国森, 郑环宇, 孙美馨, 等. 抗性淀粉生理功能及作用机制的研究进展[J/OL]. 食品科学: 1−11[2020-10-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200109.0943.014.html.

    Yan G S, Zheng H Y, Sun M X, et al. Research progress on digestive process and physiological function of resistant starch[J/OL]. Food Science, 1−11[2020-10-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200109.0943.014.html.
    [3]
    王竹, 杨月欣, 韩军花, 等. 抗性淀粉对饮食诱发葡萄糖耐量异常的预防[J]. 营养学报,2002,4(1):48−52. [Wang Z, Yang Y X, Han J H, et al. Resistant starch prevents diet-induced impaired glucose tolerance[J]. Journal of Nutrition,2002,4(1):48−52. doi: 10.3321/j.issn:0512-7955.2002.01.012
    [4]
    Shang W T, Xu Si, Zhou Z K, et al. Studies on the unique properties of resistant starch and chito-oligosaccharide complexes for reducing high-fat diet-induced obesity and dyslipidemia in rats[J]. Journal of Functional Foods,2017,38(Part A):20−27.
    [5]
    Robertson M D. Dietary-resistant starch and glucose metabolism[J]. Current Opinion in Clinical Nutrition & Metabolic Care,2012,15(4):362−367.
    [6]
    Margarita S, Sladjana S, Predrag B, et al. Effects of total fibre or resistant starch-rich diets within lifestyle intervention in obese prediabetic adults[J]. European Journal of Nutrition,2016,55(1):127−137. doi: 10.1007/s00394-015-0831-3
    [7]
    Matsuda H, Kumazaki K, Otokozawa R, et al. Resistant starch suppresses postprandial hypertriglyceridemia in rats[J]. Food Research International,2016,89(Part 1):838−842.
    [8]
    闫贝贝. 苦荞抗性淀粉对血脂代谢紊乱小鼠肠道菌群调节作用的研究[D]. 上海: 上海应用技术大学, 2018.

    Yan B B. Effect of tartary buckwheat resistant starch on intestinal flora in mice with lipid metabolism disorder[D]. Shanghai: Shanghai University of Applied Sciences, 2018.
    [9]
    Vrabcova M, Mikuska L, Vazan R, et al. Effect of chronic intake of liquid nutrition on stomach and duodenum morphology[J]. Acta Histochemica,2016,118(4):435−442. doi: 10.1016/j.acthis.2016.04.006
    [10]
    Akbaryan M, Mahdavi A, Jebelli-Javan A, et al. A comparison of the effects of resistant starch, fructooligosaccharide, and zinc bacitracin on cecal short-chain fatty acids, cecal microflora, intestinal morphology, and antibody titer against Newcastle disease virus in broilers[J]. Comparative Clinical Pathology,2019,28(3):661−667. doi: 10.1007/s00580-019-02936-9
    [11]
    Vitaglione P, Mennella I, Ferracane R, et al. Gut fermentation induced by a resistant starch rich whole grain diet explains serum concentration of dihydroferulic acid and hippuric acid in a model of ZDF rats[J]. Journal of Functional Foods,2019,53:286−291. doi: 10.1016/j.jff.2018.12.041
    [12]
    白建江, 朱辉明, 李丁鲁, 等. 高抗性淀粉稻米对GK糖尿大鼠的血糖和血脂代谢的影响[J]. 中国食品学报,2012,12(9):16−20. [Bai J J, Zhu H M, Li D L, et al. Effects of high-resistant starch rice on blood glucose and lipid metabolism in GK diabetic rats[J]. Journal of Chinese Institute of Food Science and Technology,2012,12(9):16−20.
    [13]
    Qi Wang, Yafeng Zheng, Weijing Zhuang, et al. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]. Food Chemistry,2018,264:427−434. doi: 10.1016/j.foodchem.2018.05.056
    [14]
    孙燕, 吴梦瑶, 高誉珊, 等. 高脂高糖饮食致非酒精性脂肪性肝病的证候属性研究[J]. 河南中医,2020,40(8):1219−1226. [Sun Y, Wu M Y, Gao Y S, et al. Study on the syndrome attributes of non-alcoholic fatty liver disease caused by fat and high sugar diet[J]. Henan Traditional Chinese Medicine,2020,40(8):1219−1226.
    [15]
    陈燕. 苦荞抗性淀粉的制备、理化性质及其应用研究[D]. 成都: 西华大学, 2017.

    Chen Y. Study on preparation, physicochemical properties and application of tartary buckwheat resistant starch[D]. Chengdu: Xihua University, 2017.
    [16]
    陈致瑜, 刘率男, 罗振华, 等. 二甲双胍对高脂饮食诱导的2型糖尿病小鼠胰岛β细胞功能的改善及机制探讨[J]. 药学学报,2017,52(10):1561−1567. [Chen Z Y, Liu S N, Luo Z H, et al. The improvement of metformin on pancreatic β-cell function in type 2 diabetic mice induced by high-fat diet and its mechanism[J]. Acta Pharmaceutica,2017,52(10):1561−1567.
    [17]
    李汉荣, 黄淑君, 曾本华, 等. 香蕉抗性淀粉对C57BL/6J肥胖小鼠肠道放线菌群的调控作用[J]. 食品科学,2017,38(23):149−156. [Li H R, Huang S J, Zeng B H, et al. Regulation of banana resistant starch on intestinal actinomycetes in C57BL/6J obese mice[J]. Food Science,2017,38(23):149−156. doi: 10.7506/spkx1002-6630-201723024
    [18]
    王琦. 莲子抗性淀粉降血糖功效及其机理研究[D]. 福州: 福建农林大学, 2018.

    Wang Q. Study on the hypolipidemic effect of lotus seed resistant starch and its mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018.
    [19]
    张浩, 陈伟鸿, 马方励, 等. 富硒青钱柳多糖对糖尿病模型小鼠血糖、血脂和免疫力的影响[J]. 食品科学,2017,38(17):228−232. [Zhang H, Chen W H, Ma F L, et al. Effects of selenium-enriched cyclocarya polysaccharides on blood glucose, blood lipids and immunity in diabetic mice[J]. Food Science,2017,38(17):228−232. doi: 10.7506/spkx1002-6630-201717037
    [20]
    Sun H, Ma X, Zhang S, et al. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats[J]. International Journal of Biological Macromolecules,2018,110:276−284. doi: 10.1016/j.ijbiomac.2017.11.162
    [21]
    金露. 竹茹多糖预防小鼠膳食诱导型肥胖及调节其肠道菌群的功效研究[D]. 杭州: 浙江大学, 2017.

    Jin L. Study on the efficacy of Zhuru polysaccharide in preventing diet-induced obesity in mice and regulating its intestinal flora[D]. Hangzhou: Zhejiang University, 2017.
    [22]
    邱敏懿, 晋小雁, 张彩娟, 等. RS3型芭蕉芋抗性淀粉的减肥降脂作用及急性毒性分析[J]. 中国实验方剂学杂志,2019,25(1):149−156. [Qiu M Y, Jin X Y, Zhang C J, et al. Effect of canna edulis type 3 resistant starch in reducing body weight, serum lipid and acute toxicity[J]. Chinese Journal of Experimental Traditional Medical Formulae,2019,25(1):149−156.
    [23]
    肖兵. 抗性淀粉对糖尿病小鼠血糖和短链脂肪酸的影响及代餐产品开发[D]. 南昌: 南昌大学, 2018.

    Xiao B. Resistant starch to diabetic mice the regulation of blood sugar and the effect of short-chain fatty acid D]. Nanchang: Nanchang University, 2018.
    [24]
    Maki K C, Pelkman C L, Finocchiaro E T, et al. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men.[J]. The Journal of Nutrition,2012,142(4):717−723. doi: 10.3945/jn.111.152975
    [25]
    李伟, 姚树奇. 鹰嘴豆抗性淀粉提取工艺及其降血脂效应研究[J]. 现代食品,2018,4(7):188−192. [Li W, Yao S Q. Extraction process of chickpea resistant starch and its effect on reducing blood lipids[J]. Modern Food,2018,4(7):188−192.
    [26]
    蒋小银. 糖原酶解理论模型的建立和探究难消化淀粉对小鼠肝糖原结构的影响[D]. 武汉: 华中科技大学, 2017.

    Jiang X Y. Establishment of a theoretical model of glycogen enzymolysis and exploration of the effect of indigestible starch on the structure of mouse liver glycogen[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [27]
    陈云超, 崔武卫, 黄赣辉. 抗性淀粉长周期对糖尿病大鼠控制作用的研究[J]. 食品工业科技,2014,35(20):374−378, 382. [Chen Y C, Cui W W, Huang G H. Long term effect on diabetic rats of feeding resistant starch[J]. Science and Technology of Food Industry,2014,35(20):374−378, 382.
    [28]
    张文青, 张月明. 抗性淀粉对糖尿病大鼠胰岛素抵抗的影响[J]. 营养学报,2008,30(3):257−261. [Zhang W Q, Zhang Y M. Effects of resistant starch on insulin resistance in diabetic mellitus rats[J]. Journal of Nutrition,2008,30(3):257−261. doi: 10.3321/j.issn:0512-7955.2008.03.008
    [29]
    Haub M D, Hubach K L, Altamimi E K, et al. Different types of resistant starch elicit different glucose reponses in humans[J]. Journal of Nutrition and Metabolism,2009,2010(2):1−4.
    [30]
    杨玥熹, 肖兵, 黄赣辉, 等. 玉米抗性淀粉对血糖, 结肠菌群和短链脂肪酸的影响: 体外和体内验证[C] //中国食品科学技术学会第十四届年会暨第九届中美食品业高层论坛, 江苏: 中国食品科学技术学会, 2017: 2.

    Yang Y X, Xiao B, Huang G H, et al. The effect of corn resistant starch on blood sugar, colonic flora and short-chain fatty acids: In vitro and in vivo verification[C] // The 14th annual meeting of the chinese society for food science and technology and the 9th sino-us food industry high-level forum, Jiangsu: Chinese institute of food science and technology, 2017: 2.
    [31]
    贾彦, 魏秀秀, 赵培, 等. 魔芋葡甘露聚糖和香蕉抗性淀粉对小鼠肠道短链脂肪酸分泌及血脂影响的研究[J]. 现代食品科技,2016,32(7):18−25. [Jia Y, Wei X X, Zhao P, et al. Effects of konjac glucomannan and banana-resistant starch on intestinal secretion of short-chain fatty acids and blood lipids in mice[J]. Modern Food Technology,2016,32(7):18−25.
  • Cited by

    Periodical cited type(14)

    1. 王佳,丁方莉,安宇,曾雪莹,张智慧,李思楠,徐开媛,周芳,王颖,张璐,徐炳政,孙泽堃. 芸豆-蓝靛果复合发酵液制备工艺优化及其抗氧化活性. 食品工业科技. 2025(03): 222-231 . 本站查看
    2. 李天昊,位绍文,毛伟健,姜秀兰,薛彦华,丁洪发,盖凌云,程凡升,徐海忠. 三种酶前处理对香蕉酵素理化性质、生物活性及感官的影响. 食品工业科技. 2024(07): 86-92 . 本站查看
    3. 白海军,庞惟俏,张智慧,王颖. 藜麦—蓝靛果复合汁发酵工艺及其上清液抗氧化与抗疲劳作用研究. 食品与机械. 2024(07): 148-154 .
    4. 陈雨欣,杨峰山,付海燕,宋新宇,刘春光. 食用植物酵素发酵过程中主要成分与功能研究进展. 中国农学通报. 2024(24): 143-150 .
    5. 孙茂成,王颖地,费鹏,昂媛,周铁莉,杨柳. 植物酵素的发酵微生物、加工技术及潜在生理功能. 中国调味品. 2024(11): 200-204 .
    6. 张智慧,庞惟俏,徐炳政,王颖,王佳,佐兆杭,孙维,徐开媛,李思楠. 藜麦和蓝靛果发酵菌株的筛选及复合发酵工艺的优化. 食品工业科技. 2024(24): 204-213 . 本站查看
    7. 刘倩,袁越,张杰,赵瑞丽,赵黎明. 不同菌种发酵对诺丽果酵素的抗氧化性及风味物质的影响. 食品工业科技. 2023(04): 129-137 . 本站查看
    8. 马天颖,蔡俊. 植物乳杆菌发酵马齿苋陈皮工艺优化及发酵液抗氧化活性分析. 食品研究与开发. 2023(08): 143-148 .
    9. 王虎玄,柯西娜,王聪,朱亚南,孙宏民. 苹果酵素的制备及其抗氧化功能研究. 陕西科技大学学报. 2023(03): 37-46 .
    10. 田文静,武亚帅,程雪华,马长路. 柿子酵素发酵过程中活性成分及其抗氧化性能的研究. 北京农业职业学院学报. 2023(04): 59-66 .
    11. 韩怀磊,李文,王陶,贺羽,杨太平,袁珍虎,石相弘. 枯草芽孢杆菌发酵复配饲料的抗氧化活性研究. 饲料研究. 2023(12): 71-76 .
    12. 李昕阳,王淑敏,冷悦,陆珠,王旭,王欢,陈长宝. 蜜环菌液体培养基配方优选及其活性成分和抗氧化活性研究. 食品安全质量检测学报. 2023(19): 272-279 .
    13. 吕铭守,高亦昕,石彦国,刘琳琳,孙冰玉,朱秀清. 响应面法优化杂豆酸豆乳发酵工艺及体外消化分析. 食品工业科技. 2022(10): 238-245 . 本站查看
    14. 王帅,宋奇,范影,冯超. 桑葚酵素发酵过程中理化指标及抗氧化活性的变化. 中国酿造. 2022(11): 84-88 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (192) PDF downloads (22) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return