LU Xin, WANG Lijuan, GUO Wei, et al. Research Progress of Shigella Detection Technology in Food[J]. Science and Technology of Food Industry, 2022, 43(1): 410−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100045.
Citation: LU Xin, WANG Lijuan, GUO Wei, et al. Research Progress of Shigella Detection Technology in Food[J]. Science and Technology of Food Industry, 2022, 43(1): 410−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100045.

Research Progress of Shigella Detection Technology in Food

More Information
  • Received Date: October 11, 2020
  • Available Online: November 02, 2021
  • Shigella is one of the main food-borne pathogens, and its low infectious dose and serious hazard have attracted people's attention. Therefore, it is essential to develop rapid, sensitive and efficient methods for the detection of Shigella and to ensure food quality and safety. Methods for detecting Shigella can be divided into three categories: traditional culture methods, immunological methods and molecular biology methods. Many studies have made various improvements in order to make the detection technology more practical in sample detection. This article reviews recent methods for the detection of Shigella, including improved traditional methods, immunological methods, molecular biology methods, as well as new and emerging detection methods. The application scope and progress of these methods are highlighted to provide a reference for the selection of detection methods for Shigella.
  • [1]
    BARRY E, CASSELS F, RIDDLE M, et al. Vaccines against Shigella and Enterotoxigenic Escherichia coli: A summary of the 2018 VASE conference[J]. Vaccine,2019,37(34):4768−4774. doi: 10.1016/j.vaccine.2019.02.070
    [2]
    GOLOVLIOV I, SJOSTEDT A, MOKRIEVICH A, et al. A method for allelic replacement in Francisella tularensis[J]. Fems Microbiol Lett,2003,222(2):273−280. doi: 10.1016/S0378-1097(03)00313-6
    [3]
    赵怀龙, 付留杰, 唐功臣. 我国主要的食源性致病菌[J]. 医学动物防制,2012,28(11):1212−1216. [ZHAO H L, FU L J, TANG G C. Main foodborn pathogens in our country[J]. Journal of Medical Pest Control,2012,28(11):1212−1216.
    [4]
    秦巧玲. 志贺氏菌多克隆抗体制备及ELISA检测方法的建立[D]. 武汉: 华中农业大学, 2008.

    QIN Q L. Preparation of polyclonal antibody Shigella and establishment of ELISA methods [D]. Wuhan: Huazhong Agricultural University, 2008.
    [5]
    章钢刚, 赖卫华. 食源性致病菌免疫学检测方法研究进展[J]. 食品安全质量检测学报,2015,6(9):3414−3419. [ZHANG G G, LAI W H. Research progress of immunological detection methods of foodborne pathogen[J]. Journal of Food Safety and Quality,2015,6(9):3414−3419.
    [6]
    中华人民共和国卫生部. GB 4789.5-2012 食品安全国家标准·食品微生物学检验·志贺氏菌检验:[S]. 北京: 中国标准出版社, 2012: 4-6.

    Ministry of Health of the People's Republic of China. GB 4789.5-2012 National food safety standard, Food microbiological inspection, Shigella inspection [S]. Beijing: China Standards Press, 2012: 4-6.
    [7]
    崔庆刚, 杨志远, 杜永新, 等. 志贺氏菌的生化特性及检测方法的研究进展[J]. 上海畜牧兽医通讯,2017(1):23−25. [CUI Q G, YANG Z Y, DU Y X, et al. Research progress on biochemical characteristics and detection methods of Shigella[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine,2017(1):23−25.
    [8]
    JUNG L S, AHN J. Evaluation of bacteriophage amplification assay for rapid detection of Shigella boydii in food systems[J]. Annals of Microbiology,2016,66(2):883−888. doi: 10.1007/s13213-015-1178-y
    [9]
    李志明. 志贺氏菌传统检验方法研究进展[J]. 食品安全质量检测学报,2019,10(3):15−19. [LI Z M. Research progress of traditional detection methods of Shigella[J]. Journal of Food Safety and Quality,2019,10(3):15−19.
    [10]
    TANG X J, YANG Z, CHEN X B, et al. Verification and large scale clinical evaluation of a national standard protocol for Salmonella spp./Shigella spp. screening using real-time PCR combined with guided culture[J]. Journal Microbiol Methods,2018,145:14−19. doi: 10.1016/j.mimet.2017.12.007
    [11]
    吴林洪. 食源性致病菌快速检测技术研究进展[J]. 食品科学,2012(22):336−337. [WU L H. Research progress on rapid detection technology of foodborne pathogens[J]. Food Science,2012(22):336−337.
    [12]
    BRUNO J G. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold[J]. Pathogens,2014,3(2):341−355. doi: 10.3390/pathogens3020341
    [13]
    GORSICH E E, BENGIS R G, EZENWA V O, et al. Evaluation of the sensitivity and specificity of an enzyme-linked immunosorbent assay for diagnosing brucellosis in African buffalo (Syncerus caffer)[J]. Journal of Wildlife Diseases,2015,51(1):9−18. doi: 10.7589/2013-12-334
    [14]
    林吉恒, 黄朱梁, 彭志兰, 等. 免疫磁珠分离技术在食源性致病菌检测中的应用[J]. 食品安全质量检测学报,2019,10(18):5998−6005. [LIN J H, HUANG Z L, PENG Z L, et al. Application of immunomagnetic bead separation technology in the detection of foodborne pathogens[J]. Journal of Food Safety and Suality,2019,10(18):5998−6005.
    [15]
    陈万明. 基于适配体散射探针、CSDPR的食源性致病菌快速检测[D]. 无锡: 江南大学, 2017.

    CHEN W M. Rapid detection of foodborne pathogens based on aptamer scattering probe and csdpr [D]. Wuxi: Jiangnan University, 2017.
    [16]
    SONG C, GUO H, LIU C, et al. Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples[J]. Food Control,2016,59:345−351. doi: 10.1016/j.foodcont.2015.06.012
    [17]
    YAHAAYAA M L, ZAKARIA N D, NOORDIN R, et al. The effect of nitrocellulose membrane pore size of lateral flow immunoassay on sensitivity for detection of Shigella spp. in milk sample[J]. Materials Today:Proceedings,2019,17:878−883. doi: 10.1016/j.matpr.2019.06.384
    [18]
    MARUOKA H, HINENOYA A, YASUDA N, et al. Evaluation of the GeneFields® EHEC/SS PCR dipstick DNA chromatography kit for the detection of enteric bacterial pathogens in stool specimens of healthy humans[J]. Journal Microbiol Methods,2019,161:111−117. doi: 10.1016/j.mimet.2019.04.016
    [19]
    GUPTA P, DHAKED R K. Immunological detection assays for recombinant Shiga toxin & Shigella dysenteriae[J]. The Indian Journal of Medical Research,2019,149(3):412. doi: 10.4103/ijmr.IJMR_308_17
    [20]
    CHEN Y, ZHANG L, XU L, et al. Rapid and sensitive detection of Shigella flexneri using fluorescent microspheres as label for immunochromatographic test strip[J]. Annals of Translational Medicine,2019,7(20):565−565. doi: 10.21037/atm.2019.09.46
    [21]
    DIANA M S. On the track for an efficient detection of Escherichia coli in water: A review on PCR-based methods[J]. Ecotoxicology and Environmental Safety,2015,113:400−411. doi: 10.1016/j.ecoenv.2014.12.015
    [22]
    MOKHTARI W, NSAIBIA S, GHARBI A, et al. Real-time PCR using SYBR Green for the detection of Shigella spp. in food and stool samples[J]. Mol Cell Probe,2013,27(1):53−59. doi: 10.1016/j.mcp.2012.09.002
    [23]
    LIU Y, CAO Y, WANG T, et al. Detection of 12 common food-borne bacterial pathogens by TaqMan real-time PCR using a single set of reaction conditions[J]. Front Microbiol,2019,10:222. doi: 10.3389/fmicb.2019.00222
    [24]
    MA K, DENG Y, BAI Y, et al. Rapid and simultaneous detection of Salmonella, Shigella, and Staphylococcus aureus in fresh pork using a multiplex real-time PCR assay based on immunomagnetic separation[J]. Food Control,2014,42:87−93. doi: 10.1016/j.foodcont.2014.01.042
    [25]
    HE P Y, ZHU G Y, LUO J Y, et al. Development and application of a one-tube multiplex real-time PCR with melting curve analysis for simultaneous detection of five foodborne pathogens in food samples[J]. Journal of Food Safety,2017,37(2):e12297. doi: 10.1111/jfs.12297
    [26]
    YANG J, ZHANG N, LV J, et al. Comparing the performance of conventional PCR, RTQ-PCR, and droplet digital PCR assays in detection of Shigella[J]. Molecular and Cellular Probes,2020,51:101531. doi: 10.1016/j.mcp.2020.101531
    [27]
    CHRISTIAN A, WILLIAMS P M. Real time quantitative PCR[J]. Genome Methods,1996,6:986−994.
    [28]
    MCLVER C J, TJANDRA F A, Er N, et al. A novel quantitative PCR assay for testing bacteria directly from plate cultures using SYBR Green technology[J]. Pathology,2017,49(6):658−660. doi: 10.1016/j.pathol.2017.06.004
    [29]
    邵晓青, 吕申, 冯璐, 等. 三种荧光染料SYBR Green Ⅰ、LCGreen PLUS、EvaGreen在实时定量PCR应用中的比较[J]. 大连医科大学学报,2016,38(5):428−431. [SHAO X Q, LV S, FENG L, et al. Comparison of SYBR Green Ⅰ, LCGreen PLUS, EvaGreen in quantitative real-time PCR[J]. Journal of Dalian Medical University,2016,38(5):428−431.
    [30]
    陈智瑾, 廖虹瑜, 杨晶艳, 等. EvaGreen实时荧光定量PCR检测类志贺邻单胞菌的方法建立[J]. 现代预防医学,2012,39(23):6234−6237. [CHEN Z J, LIAO H Y, YANG J Y, et al. Establishment of a real-time PCR with EvaGreen dye for the detection of Plesiomonas shigelloides[J]. Modern Preventive Medicine,2012,39(23):6234−6237.
    [31]
    魏琼. 沙门氏菌、志贺氏菌和金黄色葡萄球菌多重荧光定量PCR快速检测方法的研究[D]. 长春: 吉林农业大学, 2011.

    WEI Q. Detection of Salmonella, Shigella and Staphylococcus aureus by multiplex real-time PCR based on SYBR Green Ⅰ[D]. Changchun: Jilin Agricultural University, 2011.
    [32]
    MEI L L, CHANG X U, YANG Y, et al. Alive foodborne pathogen Shigella detection by EMA real-time fluorescence PCR[J]. Disease Surveillance,2016,31(11):909−914.
    [33]
    王磊, 李雅玥, 刘丹, 等. 用于志贺氏菌血清型检测的基因芯片及其检测方法和检测用试剂盒: 中国, 200510132404.7[P]. 2007-06-27.

    WANG L, LI Y Y, LIU D, et al. Gene chip for serotype detection of Shigella and its detection method and detection kit: China, 200510132404.7[P]. 2007-06-27.
    [34]
    GUO Q X, ZHANG L, ZHANG B Q, et al. Development of liquid gene chip for simultaneous detection of three species of pathogenic bacteria[J]. Food Science,2013,34(16):191−195.
    [35]
    FENG J, HU X, HUANG X, et al. Study on rapid detection of seven common foodborne pathogens by gene chip[J]. African Journal of Microbiology Research,2016,10:285−291. doi: 10.5897/AJMR2015.7495
    [36]
    LI Y J. Establishment and application of a visual DNA microarray for the detection of food-borne pathogens[J]. Analytical Sciences,2016,32(2):215−218. doi: 10.2116/analsci.32.215
    [37]
    CHEN B, WANG S, HONG B, et al. Gene chips for food quality evaluation[M]. Evaluation Technologies for Food Quality. Elsevier. 2019: 619-634.
    [38]
    LIZARDI P M, HUANG X, ZHU Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nature Genetics,1998,19(3):225−232. doi: 10.1038/898
    [39]
    NOTOMI T O H, MASUBUCHI H. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):E63. doi: 10.1093/nar/28.12.e63
    [40]
    PIRPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. Plos Biology,2006,4(7):204. doi: 10.1371/journal.pbio.0040204
    [41]
    XU G, HU L, ZHONG H, et al. Cross priming amplification: Mechanism and optimization for isothermal DNA amplification[J]. Scientific Reports,2012,2:246. doi: 10.1038/srep00246
    [42]
    孟兆祥, 张伟, 檀建新, 等. 一种DNA扩增的新技术: 利用热稳定的Bst DNA聚合酶驱动跨越式滚环等温扩增反应[J]. 中国生物化学与分子生物学报,2013,29(9):892−898. [MENG Z X, ZHANG W, TAN J X, et al. A new method: Themostable Bst DNA polymerase drives saltatory rolling circle amplification[J]. Chinese Journal of Biochemistry and molecular biology,2013,29(9):892−898.
    [43]
    王建昌, 胡连霞, 段永生, 等. 志贺氏菌实时荧光单引物等温扩增方法的建立及应用[J]. 食品科学技术学报,2015,33(6):40−45. [WANG J C, HU L X, DUAN Y S, et al. Establishment and application of real-time fluorescence single primer isothermal amplification for Shigella[J]. Journal of Food Science and Technology,2015,33(6):40−45.
    [44]
    刘立兵, 孙晓霞, 姜彦芬, 等. 食品中检测志贺氏菌的实时荧光RPA方法的建立与应用[J]. 中国食品学报,2019,19(10):259−264. [LIU L B, SUN X X, JIANG Y F, et al. Development and application of the real-time recombinase polymerase amplification assay for detection of Shigella in food[J]. Chinese Journal of Food,2019,19(10):259−264.
    [45]
    WANG Z Y, YANG Q, ZHANG Y Z, et al. Saltatory rolling circle amplification (SRCA): A novel nucleic acid isothermal amplification technique applied for rapid detection of Shigella Spp. in vegetable salad[J]. Food Analytical Method,2018,11(2):504−513. doi: 10.1007/s12161-017-1021-0
    [46]
    贾甜甜. 牛奶中三种常见食源性致病菌快速检测方法的建立[D]. 北京: 中央民族大学, 2019.

    JIA T T. Establishment of rapid detection methods for three common foodborne pathogens in milk [D]. Beijing: Minzu University of China, 2019.
    [47]
    XIAO R, RONG Z, LONG F, et al. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2014,132:1−5.
    [48]
    ZAREI S S, ENSAFI A A. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode[J]. Mikrochim Acta,2018,185(12):538. doi: 10.1007/s00604-018-3075-0
    [49]
    FENG J L, SHEN Q, WU J J, et al. Naked-eyes detection of Shigella flexneri in food samples based on a novel gold nanoparticle-based colorimetric aptasensor[J]. Food Control,2019,98:333−341. doi: 10.1016/j.foodcont.2018.11.048
    [50]
    SONG M S, SEKHON S S, SHIN WR, et al. Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform[J]. Molecules,2017,22(5):825. doi: 10.3390/molecules22050825
    [51]
    ELAHI N, BAGHERSAD M H, KAMIALI M. Precise, direct, and rapid detection of Shigella spp. gene by a novel unmodified AuNPs-based optical genosensing system[J]. Journal Microbiol Methods,2019,162:42−49. doi: 10.1016/j.mimet.2019.05.007
    [52]
    ELAHI N, KAMALI M, BAGHERSAD M H, et al. A fluorescence nano-biosensors immobilization on iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp.[J]. Materials Science and Engineering: 2019, 105: 110-113.
    [53]
    CHEN W, YAN Y, ZHANG Y, et al. DNA transducer-triggered signal switch for visual colorimetric bioanalysis[J]. Scientific Reports,2015,5:11190. doi: 10.1038/srep11190
    [54]
    DIRKS R M, PIERCE N A. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(43):15275−8. doi: 10.1073/pnas.0407024101
    [55]
    DUAN Z, LI Z, DAI J, et al. Nucleotide base analog pyrrolo-deoxycytidine as fluorescent probe signal for enzyme-free and signal amplified nucleic acids detection[J]. Talanta,2017,164:34−38. doi: 10.1016/j.talanta.2016.10.079
    [56]
    DAI J, DUAN Z, CAO M, et al. Rapid DNA detection based on self-replicating catalyzed hairpin assembly using nucleotide base analog pyrrolo-deoxycytidine as fluorophore[J]. Talanta,2018,181:142−146. doi: 10.1016/j.talanta.2018.01.007
    [57]
    TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science (New York, NY),1990,249(4968):505−510. doi: 10.1126/science.2200121
    [58]
    李聪. 食源性蜡样芽孢杆菌和志贺氏菌适体的筛选及检测方法的建立[D]. 保定: 河北农业大学, 2019.

    LI C. Aptamers screening and establishment of an aptamer-based methods for detection of the food-borne Bacillus cereus and Shigella[D]. Baoding: Hebei Agricultural University, 2019.
  • Cited by

    Periodical cited type(8)

    1. 滕薇,刘树滔,吴金鸿,张勇. 透明质酸的制备、功能特性及其调节肠道健康的研究进展. 中国食品学报. 2024(07): 401-413 .
    2. 廖曦,刘雨薇,冯金华,李卡. 透明质酸水凝胶在医用导管表面改性的应用进展. 中国医疗器械杂志. 2023(02): 173-177 .
    3. 张泽华,刘志林,陈晨. 超小分子透明质酸功效性能测试. 日用化学品科学. 2023(05): 29-34 .
    4. 滕薇,刘俊辉,吴金鸿,刘树滔. 酶解—膜分离耦合连续制备抗氧化性小分子透明质酸. 食品与机械. 2023(12): 162-170 .
    5. 李慧凝,张京良,杨艮,江晓路. 酶法制备透明质酸寡糖及其透皮吸收活性研究. 食品工业科技. 2022(06): 77-82 . 本站查看
    6. 石晶,冯云,包杰,樊建茹,徐桂云,范金石. 天然生物质材料的制备、性质与应用(Ⅲ)——医护两用的糖胺聚糖:透明质酸. 日用化学工业. 2022(03): 237-244 .
    7. 郑博文,王斌雅,肖婉玲,孙亚娟,赵炳天,杨成. 基于蛋白质组学的透明质酸寡聚糖抗炎活性研究及验证. 食品与发酵工业. 2022(14): 33-38 .
    8. 张洛瑜,崔云前,郝晨晓,李雅晖. 透明质酸啤酒的研究概况. 食品科技. 2022(08): 43-46 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (396) PDF downloads (34) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return