Citation: | CHEN Dan, WANG Feng, JIANG Shan, et al. Research Progress on Chemical and Biological Synthesis of Astaxanthin[J]. Science and Technology of Food Industry, 2021, 42(21): 445−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100037. |
[1] |
WALSH C T, TANG Y. The chemical biology of human vitamins[M]. RSC: Royal Society of Chemistry, 2018, 10: 1-446
|
[2] |
孙伟红. 不同来源虾青素的分离制备及其构效关系研究[D]. 青岛: 中国海洋大学, 2015.
SUN W H. Study on the separation and preparation of astaxanthin from different sources and its structure-activity relationship[D]. Qingdao: Ocean University of China, 2015.
|
[3] |
DAVINELLI S, NIELSEN M, SCAPAGNINI G. Astaxanthin in skin health, repair, and disease: A comprehensive review[J]. Nutrients,2018,10(4):522. doi: 10.3390/nu10040522
|
[4] |
CONG X Y, ZHANG H Z J I J O E. Recent progress in sources, biological activity and application of astaxanthin[J]. International Journal of Sciences 2019, 8(3): 31−34.
|
[5] |
AMBATI R, PHANG S M, RAVI S, et al. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review[J]. Marine Drugs,2014,12(1):128−152. doi: 10.3390/md12010128
|
[6] |
HOLTIN K, KUEHNLE M, REHBEIN J, et al. Determination of astaxanthin and astaxanthin esters in the microalgae by LC-(APCI)MS and characterization of predominant carotenoid isomers by N Haematococcus pluvialis MR spectroscopy[J]. Analytical and Bioanalytical Chemistry,2009,395(6):1613−1622. doi: 10.1007/s00216-009-2837-2
|
[7] |
CHEN G, WANG B, HAN D, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae)[J]. Plant J,2015,81(1):95−107. doi: 10.1111/tpj.12713
|
[8] |
NOVOVESKá L, ROSS M E, STANLEY M S, et al. Microalgal carotenoids: A review of production, current markets, regulations, and future direction[J]. Marine Drugs,2019,17(11):640. doi: 10.3390/md17110640
|
[9] |
AKI T, HACHIDA K, YOSHINAGA M, et al. Thraustochytrid as a potential source of carotenoids[J]. Journal of the American Oil Chemists Society,2003,80(8):789−794. doi: 10.1007/s11746-003-0773-2
|
[10] |
皮士卿, 陈新志, 胡四平, 等. 虾青素的合成[J]. 有机化学,2007,27(9):1126−1129. [Pi S Q, CHEN X Z, HU S P, et al. Synthesis of astaxanthin[J]. Organic Chemistry,2007,27(9):1126−1129.
|
[11] |
MOBIN S, ALAM F. Some promising microalgal species for commercial applications: A review[J]. Energy Procedia,2017,110:510−517. doi: 10.1016/j.egypro.2017.03.177
|
[12] |
WIDMER E. Technical procedures for the syntheses of carotenoids and related compounds from 6-oxo-isophorone: Syntheses of (3R, 3′R)-zeaxanthin. Part I[J]. Helvetica Chimica Act,1990,73(36):861−867.
|
[13] |
HANSGEORG E, SPEYER, JOACHIM P, et al. Preparation of canthaxanthin and astaxanthin: USOO5210314A [P]. 1993-5-11[1993-5-11]. http://www.google.co.in/patents/USOO5210314A.
|
[14] |
WOLFGANG K, BRIHL, KLAUS H, et al. Preparation of astaxanthn: USOO5654488A [P]. 1997-08-05[1997-08-05]. http://www.google.co.in/patents/USOO5654488A.
|
[15] |
黄国东, 蒋成君, 等. 虾青素化学合成的研究进展[C]. 2009年浙江省食品添加剂与配料行业创业创新论坛. 浙江省食品添加剂工业协会, 2009, 4: 353−358.
HUANG G D, JIANG C J, et al. Research progress in the chemical synthesis of astaxanthin[C]. 2009 Zhejiang Food Additives and Ingredients Industry Entrepreneurship Innovation Forum. Zhejiang Food Additives Industry Association, 2009, 4: 353−358.
|
[16] |
FANG N, WANG C, LIU X, et al. De novo synthesis of astaxanthin: From organisms to genes[J]. Trends in Food Science & Technology,2019,92:162−171.
|
[17] |
VRANOVá E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annual Review of Plant Biology,2013,64(1):665−700. doi: 10.1146/annurev-arplant-050312-120116
|
[18] |
LI C, SWOFFORD C A, SINSKEY A J. Modular engineering for microbial production of carotenoids[J]. Metab Eng Commun,2020,10:e00118. doi: 10.1016/j.mec.2019.e00118
|
[19] |
LUO Q, BIAN C, TAO M, et al. Genome and transcriptome sequencing of the astaxanthin-producing green microalga, Haematococcus pluvialis[J]. Genome Biol Evol,2019,11(1):166−173. doi: 10.1093/gbe/evy263
|
[20] |
LOHR M, SCHWENDER J, POLLE J E. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae[J]. Plant Sci,2012,185-186(none):9−22.
|
[21] |
YE J, LIU M, HE M, et al. Illustrating and enhancing the biosynthesis of astaxanthin and docosahexaenoic acid in Aurantiochytrium sp. SK4[J]. Mar Drugs,2019,17(1).
|
[22] |
HENRY L K, THOMAS S T, WIDHALM J R, et al. Contribution of isopentenyl phosphate to plant terpenoid metabolism[J]. Nature Plants,2018,4(9):721−729. doi: 10.1038/s41477-018-0220-z
|
[23] |
MOISE A R, AL-BABILI S, WURTZEL E T. Mechanistic aspects of carotenoid biosynthesis[J]. Chem Rev,2014,114(1):164−193. doi: 10.1021/cr400106y
|
[24] |
ÁLVAREZ V, RODRÍGUEZ-SÁIZ M, FUENTE J L D L, et al. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls[J]. Fungal Genetics & Biology,2006,43(4):0−272.
|
[25] |
LIU Y, CUI Y, CHEN J, et al. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin[J]. Algal Research,2019,44:101679. doi: 10.1016/j.algal.2019.101679
|
[26] |
SCHOEFS B, RMIKI N, RACHADI J, LEMOINE Y. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids[J]. Febs Letters, 2001, 500(3): 125−8.
|
[27] |
GÓMEZ L, OROZCO M I, QUIROGA C, et al. Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantinay expresión de genes en H. pluvialis[J]. Revista Mutis,2019,9(2):7−24. doi: 10.21789/22561498.1532
|
[28] |
IDE T, HOYA M, TANAKA T, et al. Enhanced production of astaxanthin in Paracoccus sp. strain N-81106 by using random mutagenesis and genetic engineering[J]. Biochemical Engineering Journal,2012,65:37−43. doi: 10.1016/j.bej.2012.03.015
|
[29] |
SHAHINA M, HAMEED A, LIN S Y, et al. Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium[J]. Int J Syst Evol Microbiol,2013,63(Pt 9):3415−3422.
|
[30] |
MATSUMOTO M, IWAMA D, ARAKAKI A, et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment[J]. Int J Syst Evol Microbiol,2011,61(Pt 12):2956−2961.
|
[31] |
ASKER D. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium[J]. J Agric Food Chem,2017,65(41):9101−9109. doi: 10.1021/acs.jafc.7b03556
|
[32] |
HENKE N A, HEIDER S A, PETERS-WENDISCH P, et al. Production of the marine carotenoid astaxanthin by metabolically engineered corynebacterium glutamicum[J]. Mar Drugs,2016,14(7):124. doi: 10.3390/md14070124
|
[33] |
KARIN LEMUTH K S A C A. Engineering of a plasmid-free Escherichia coli strain for improvedin vivo biosynthesis of astaxanthin[J]. Microbial Cell Factories,2011:10.
|
[34] |
YE R W, YAO H, STEAD K, et al. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a[J]. J Ind Microbiol Biotechnol,2007,34(4):289−299. doi: 10.1007/s10295-006-0197-x
|
[35] |
TAO L, SEDKOVA N, YAO H, et al. Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp[J]. Appl Microbiol Biotechnol,2007,74(3):625−633. doi: 10.1007/s00253-006-0708-8
|
[36] |
LEE J H, KIM Y T. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis[J]. Gene,2006,370:86−95. doi: 10.1016/j.gene.2005.11.007
|
[37] |
LIU Z Q, ZHANG J F, ZHENG Y G, et al. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation[J]. Journal of Applied Microbiology,2008,104(3):861−872. doi: 10.1111/j.1365-2672.2007.03603.x
|
[38] |
Kanwugu O N, Shatunova S A, Glukhareva T V, et al. Effect of different sugar sources on P. rhodozyma Y1654 growth and astaxanthin production[J]. Agronomy Research,2020:18.
|
[39] |
XIE H, ZHOU Y, HU J, et al. Production of astaxanthin by a mutant strain of Phaffia rhodozyma and optimization of culture conditions using response surface methodology[J]. Annals of Microbiology,2014,64(4):1473−1481. doi: 10.1007/s13213-013-0790-y
|
[40] |
KILDEGAARD K R, ADIEGO-PEREZ B, DOMENECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synth Syst Biotechnol,2017,2(4):287−294. doi: 10.1016/j.synbio.2017.10.002
|
[41] |
TRAMONTIN L R R, KILDEGAARD K R, SUDARSAN S, et al. Enhancement of astaxanthin biosynthesis in oleaginous yeast yarrowia lipolytica via microalgal pathway[J]. Microorganisms,2019,7(10):472. doi: 10.3390/microorganisms7100472
|
[42] |
ZHOU P, XIE W, LI A, et al. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae[J]. Enzyme Microb Technol,2017,100:28−36. doi: 10.1016/j.enzmictec.2017.02.006
|
[43] |
ZHOU P, YE L, XIE W, et al. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt[J]. Appl Microbiol Biotechnol,2015,99(20):8419−8428. doi: 10.1007/s00253-015-6791-y
|
[44] |
HAN D, LI Y, HU Q. Astaxanthin in microalgae: Pathways, functions and biotechnological implications[J]. Algae,2013,28(2):131−147. doi: 10.4490/algae.2013.28.2.131
|
[45] |
HE B, HOU L, DONG M, et al. Transcriptome analysis in Haematococcus pluvialis: Astaxanthin induction by high light with acetate and Fe(2)[J]. Int J Mol Sci,2018,19(1):175. doi: 10.3390/ijms19010175
|
[46] |
LU Y, JIANG P, LIU S, et al. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis[J]. Bioresour Technol,2010,101(16):6468−6474. doi: 10.1016/j.biortech.2010.03.072
|
[47] |
ZHANG K, CHEN L, LIU J, et al. Effects of butanol on high value product production in Schizochytrium limacinum B4D1[J]. Enzyme Microb Technol,2017,102:9−15. doi: 10.1016/j.enzmictec.2017.03.007
|
[48] |
DU H, LIAO X, GAO Z, et al. Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium limacinum B4D1[J]. Appl Environ Microbiol,2019,85(19):e01243−19.
|
[49] |
GUPTA A, SINGH D, BARROW C J, et al. Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production[J]. Biochemical Engineering Journal,2013,78:11−17. doi: 10.1016/j.bej.2013.04.028
|
[50] |
CHATDUMRONG W, YONGMANITCHAI W, LIMTONG S, et al. Optimization of docosahexaenoic acid (DHA) production and improvement of astaxanthin content in a mutant schizochytrium limacinum isolated from mangrove forest in thailand[J]. Kasetsart Journal - Natural Science,2007,41(2):324−334.
|
[51] |
PARK H, KWAK M, SEO J, et al. Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil[J]. Bioprocess Biosyst Eng,2018,41(9):1355−1370. doi: 10.1007/s00449-018-1963-7
|
[52] |
QUILODRÁN B, HINZPETER I, HORMAZABAL E, et al. Docosahexaenoic acid (C22: 6n−3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp. : Evaluation of liquid residues from food industry as nutrient sources[J]. Enzyme and Microbial Technology,2010,47(1-2):24−30. doi: 10.1016/j.enzmictec.2010.04.002
|
[53] |
IWASAKA H, AKI T, ADACHI H, et al. Utilization of waste syrup for production of polyunsaturated fatty acids and xanthophylls by aurantiochytrium[J]. Journal of Oleo Science,2013,62(9):729−736. doi: 10.5650/jos.62.729
|
[54] |
SUEN Y L, TANG H, HUANG J, et al. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin[J]. J Agric Food Chem,2014,62(51):12392−12398. doi: 10.1021/jf5048578
|
[55] |
WATANABE K, ARAFILES K H V, HIGASHI R, et al. Isolation of high carotenoid-producing Aurantiochytrium sp. mutants and improvement of astaxanthin productivity using metabolic information[J]. J Oleo Sci,2018,67(5):571−578. doi: 10.5650/jos.ess17230
|
[56] |
CUNNINGHAM F X, J R, GANTT E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis[J]. Plant Cell,2011,23(8):3055−3069. doi: 10.1105/tpc.111.086827
|
[57] |
HASUNUMA T, MIYAZAWA S, YOSHIMURA S, et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering[J]. Plant J,2008,55(5):857−868. doi: 10.1111/j.1365-313X.2008.03559.x
|
1. |
向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
![]() | |
2. |
赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
![]() | |
3. |
刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
![]() | |
4. |
李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
![]() | |
5. |
张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
![]() | |
6. |
吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
![]() | |
7. |
芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
![]() | |
8. |
孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 .
![]() | |
9. |
周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .
![]() |