CHEN Dan, WANG Feng, JIANG Shan, et al. Research Progress on Chemical and Biological Synthesis of Astaxanthin[J]. Science and Technology of Food Industry, 2021, 42(21): 445−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100037.
Citation: CHEN Dan, WANG Feng, JIANG Shan, et al. Research Progress on Chemical and Biological Synthesis of Astaxanthin[J]. Science and Technology of Food Industry, 2021, 42(21): 445−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100037.

Research Progress on Chemical and Biological Synthesis of Astaxanthin

More Information
  • Received Date: January 04, 2021
  • Available Online: August 29, 2021
  • Astaxanthin is an important secondary carotenoid with extremely strong antioxidative properties and is widely used in food, chemicals, pharmaceuticals, aquacultures and so on. The synthetic methods of astaxanthin include chemical synthesis and biosynthesis. Chemical synthesis of astaxanthin is the source of commercial astaxanthin, while biosynthesis of astaxanthin is safer and more popular in food and health products industries. This review summaries chemical synthetic and biosynthetic pathway of astaxanthin, with emphasizing on the biosynthetic pathways of astaxanthin, key genes involved in biosynthetic and metabolic network of astaxnathin in microorganisms and plants. The research progress of using random mutagenesis, metabolic engineering, enzyme engineering and other methods to improve the synthesis and accumulation of astaxanthin in bacteria, yeast, and marine eukaryotic microorganisms is summarized. This article can provide theoretical guidance for the research on the efficient synthesis of astaxanthin.
  • [1]
    WALSH C T, TANG Y. The chemical biology of human vitamins[M]. RSC: Royal Society of Chemistry, 2018, 10: 1-446
    [2]
    孙伟红. 不同来源虾青素的分离制备及其构效关系研究[D]. 青岛: 中国海洋大学, 2015.

    SUN W H. Study on the separation and preparation of astaxanthin from different sources and its structure-activity relationship[D]. Qingdao: Ocean University of China, 2015.
    [3]
    DAVINELLI S, NIELSEN M, SCAPAGNINI G. Astaxanthin in skin health, repair, and disease: A comprehensive review[J]. Nutrients,2018,10(4):522. doi: 10.3390/nu10040522
    [4]
    CONG X Y, ZHANG H Z J I J O E. Recent progress in sources, biological activity and application of astaxanthin[J]. International Journal of Sciences 2019, 8(3): 31−34.
    [5]
    AMBATI R, PHANG S M, RAVI S, et al. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review[J]. Marine Drugs,2014,12(1):128−152. doi: 10.3390/md12010128
    [6]
    HOLTIN K, KUEHNLE M, REHBEIN J, et al. Determination of astaxanthin and astaxanthin esters in the microalgae by LC-(APCI)MS and characterization of predominant carotenoid isomers by N Haematococcus pluvialis MR spectroscopy[J]. Analytical and Bioanalytical Chemistry,2009,395(6):1613−1622. doi: 10.1007/s00216-009-2837-2
    [7]
    CHEN G, WANG B, HAN D, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae)[J]. Plant J,2015,81(1):95−107. doi: 10.1111/tpj.12713
    [8]
    NOVOVESKá L, ROSS M E, STANLEY M S, et al. Microalgal carotenoids: A review of production, current markets, regulations, and future direction[J]. Marine Drugs,2019,17(11):640. doi: 10.3390/md17110640
    [9]
    AKI T, HACHIDA K, YOSHINAGA M, et al. Thraustochytrid as a potential source of carotenoids[J]. Journal of the American Oil Chemists Society,2003,80(8):789−794. doi: 10.1007/s11746-003-0773-2
    [10]
    皮士卿, 陈新志, 胡四平, 等. 虾青素的合成[J]. 有机化学,2007,27(9):1126−1129. [Pi S Q, CHEN X Z, HU S P, et al. Synthesis of astaxanthin[J]. Organic Chemistry,2007,27(9):1126−1129.
    [11]
    MOBIN S, ALAM F. Some promising microalgal species for commercial applications: A review[J]. Energy Procedia,2017,110:510−517. doi: 10.1016/j.egypro.2017.03.177
    [12]
    WIDMER E. Technical procedures for the syntheses of carotenoids and related compounds from 6-oxo-isophorone: Syntheses of (3R, 3′R)-zeaxanthin. Part I[J]. Helvetica Chimica Act,1990,73(36):861−867.
    [13]
    HANSGEORG E, SPEYER, JOACHIM P, et al. Preparation of canthaxanthin and astaxanthin: USOO5210314A [P]. 1993-5-11[1993-5-11]. http://www.google.co.in/patents/USOO5210314A.
    [14]
    WOLFGANG K, BRIHL, KLAUS H, et al. Preparation of astaxanthn: USOO5654488A [P]. 1997-08-05[1997-08-05]. http://www.google.co.in/patents/USOO5654488A.
    [15]
    黄国东, 蒋成君, 等. 虾青素化学合成的研究进展[C]. 2009年浙江省食品添加剂与配料行业创业创新论坛. 浙江省食品添加剂工业协会, 2009, 4: 353−358.

    HUANG G D, JIANG C J, et al. Research progress in the chemical synthesis of astaxanthin[C]. 2009 Zhejiang Food Additives and Ingredients Industry Entrepreneurship Innovation Forum. Zhejiang Food Additives Industry Association, 2009, 4: 353−358.
    [16]
    FANG N, WANG C, LIU X, et al. De novo synthesis of astaxanthin: From organisms to genes[J]. Trends in Food Science & Technology,2019,92:162−171.
    [17]
    VRANOVá E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annual Review of Plant Biology,2013,64(1):665−700. doi: 10.1146/annurev-arplant-050312-120116
    [18]
    LI C, SWOFFORD C A, SINSKEY A J. Modular engineering for microbial production of carotenoids[J]. Metab Eng Commun,2020,10:e00118. doi: 10.1016/j.mec.2019.e00118
    [19]
    LUO Q, BIAN C, TAO M, et al. Genome and transcriptome sequencing of the astaxanthin-producing green microalga, Haematococcus pluvialis[J]. Genome Biol Evol,2019,11(1):166−173. doi: 10.1093/gbe/evy263
    [20]
    LOHR M, SCHWENDER J, POLLE J E. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae[J]. Plant Sci,2012,185-186(none):9−22.
    [21]
    YE J, LIU M, HE M, et al. Illustrating and enhancing the biosynthesis of astaxanthin and docosahexaenoic acid in Aurantiochytrium sp. SK4[J]. Mar Drugs,2019,17(1).
    [22]
    HENRY L K, THOMAS S T, WIDHALM J R, et al. Contribution of isopentenyl phosphate to plant terpenoid metabolism[J]. Nature Plants,2018,4(9):721−729. doi: 10.1038/s41477-018-0220-z
    [23]
    MOISE A R, AL-BABILI S, WURTZEL E T. Mechanistic aspects of carotenoid biosynthesis[J]. Chem Rev,2014,114(1):164−193. doi: 10.1021/cr400106y
    [24]
    ÁLVAREZ V, RODRÍGUEZ-SÁIZ M, FUENTE J L D L, et al. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls[J]. Fungal Genetics & Biology,2006,43(4):0−272.
    [25]
    LIU Y, CUI Y, CHEN J, et al. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin[J]. Algal Research,2019,44:101679. doi: 10.1016/j.algal.2019.101679
    [26]
    SCHOEFS B, RMIKI N, RACHADI J, LEMOINE Y. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids[J]. Febs Letters, 2001, 500(3): 125−8.
    [27]
    GÓMEZ L, OROZCO M I, QUIROGA C, et al. Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantinay expresión de genes en H. pluvialis[J]. Revista Mutis,2019,9(2):7−24. doi: 10.21789/22561498.1532
    [28]
    IDE T, HOYA M, TANAKA T, et al. Enhanced production of astaxanthin in Paracoccus sp. strain N-81106 by using random mutagenesis and genetic engineering[J]. Biochemical Engineering Journal,2012,65:37−43. doi: 10.1016/j.bej.2012.03.015
    [29]
    SHAHINA M, HAMEED A, LIN S Y, et al. Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium[J]. Int J Syst Evol Microbiol,2013,63(Pt 9):3415−3422.
    [30]
    MATSUMOTO M, IWAMA D, ARAKAKI A, et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment[J]. Int J Syst Evol Microbiol,2011,61(Pt 12):2956−2961.
    [31]
    ASKER D. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium[J]. J Agric Food Chem,2017,65(41):9101−9109. doi: 10.1021/acs.jafc.7b03556
    [32]
    HENKE N A, HEIDER S A, PETERS-WENDISCH P, et al. Production of the marine carotenoid astaxanthin by metabolically engineered corynebacterium glutamicum[J]. Mar Drugs,2016,14(7):124. doi: 10.3390/md14070124
    [33]
    KARIN LEMUTH K S A C A. Engineering of a plasmid-free Escherichia coli strain for improvedin vivo biosynthesis of astaxanthin[J]. Microbial Cell Factories,2011:10.
    [34]
    YE R W, YAO H, STEAD K, et al. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a[J]. J Ind Microbiol Biotechnol,2007,34(4):289−299. doi: 10.1007/s10295-006-0197-x
    [35]
    TAO L, SEDKOVA N, YAO H, et al. Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp[J]. Appl Microbiol Biotechnol,2007,74(3):625−633. doi: 10.1007/s00253-006-0708-8
    [36]
    LEE J H, KIM Y T. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis[J]. Gene,2006,370:86−95. doi: 10.1016/j.gene.2005.11.007
    [37]
    LIU Z Q, ZHANG J F, ZHENG Y G, et al. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation[J]. Journal of Applied Microbiology,2008,104(3):861−872. doi: 10.1111/j.1365-2672.2007.03603.x
    [38]
    Kanwugu O N, Shatunova S A, Glukhareva T V, et al. Effect of different sugar sources on P. rhodozyma Y1654 growth and astaxanthin production[J]. Agronomy Research,2020:18.
    [39]
    XIE H, ZHOU Y, HU J, et al. Production of astaxanthin by a mutant strain of Phaffia rhodozyma and optimization of culture conditions using response surface methodology[J]. Annals of Microbiology,2014,64(4):1473−1481. doi: 10.1007/s13213-013-0790-y
    [40]
    KILDEGAARD K R, ADIEGO-PEREZ B, DOMENECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synth Syst Biotechnol,2017,2(4):287−294. doi: 10.1016/j.synbio.2017.10.002
    [41]
    TRAMONTIN L R R, KILDEGAARD K R, SUDARSAN S, et al. Enhancement of astaxanthin biosynthesis in oleaginous yeast yarrowia lipolytica via microalgal pathway[J]. Microorganisms,2019,7(10):472. doi: 10.3390/microorganisms7100472
    [42]
    ZHOU P, XIE W, LI A, et al. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae[J]. Enzyme Microb Technol,2017,100:28−36. doi: 10.1016/j.enzmictec.2017.02.006
    [43]
    ZHOU P, YE L, XIE W, et al. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt[J]. Appl Microbiol Biotechnol,2015,99(20):8419−8428. doi: 10.1007/s00253-015-6791-y
    [44]
    HAN D, LI Y, HU Q. Astaxanthin in microalgae: Pathways, functions and biotechnological implications[J]. Algae,2013,28(2):131−147. doi: 10.4490/algae.2013.28.2.131
    [45]
    HE B, HOU L, DONG M, et al. Transcriptome analysis in Haematococcus pluvialis: Astaxanthin induction by high light with acetate and Fe(2)[J]. Int J Mol Sci,2018,19(1):175. doi: 10.3390/ijms19010175
    [46]
    LU Y, JIANG P, LIU S, et al. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis[J]. Bioresour Technol,2010,101(16):6468−6474. doi: 10.1016/j.biortech.2010.03.072
    [47]
    ZHANG K, CHEN L, LIU J, et al. Effects of butanol on high value product production in Schizochytrium limacinum B4D1[J]. Enzyme Microb Technol,2017,102:9−15. doi: 10.1016/j.enzmictec.2017.03.007
    [48]
    DU H, LIAO X, GAO Z, et al. Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium limacinum B4D1[J]. Appl Environ Microbiol,2019,85(19):e01243−19.
    [49]
    GUPTA A, SINGH D, BARROW C J, et al. Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production[J]. Biochemical Engineering Journal,2013,78:11−17. doi: 10.1016/j.bej.2013.04.028
    [50]
    CHATDUMRONG W, YONGMANITCHAI W, LIMTONG S, et al. Optimization of docosahexaenoic acid (DHA) production and improvement of astaxanthin content in a mutant schizochytrium limacinum isolated from mangrove forest in thailand[J]. Kasetsart Journal - Natural Science,2007,41(2):324−334.
    [51]
    PARK H, KWAK M, SEO J, et al. Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil[J]. Bioprocess Biosyst Eng,2018,41(9):1355−1370. doi: 10.1007/s00449-018-1963-7
    [52]
    QUILODRÁN B, HINZPETER I, HORMAZABAL E, et al. Docosahexaenoic acid (C22: 6n−3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp. : Evaluation of liquid residues from food industry as nutrient sources[J]. Enzyme and Microbial Technology,2010,47(1-2):24−30. doi: 10.1016/j.enzmictec.2010.04.002
    [53]
    IWASAKA H, AKI T, ADACHI H, et al. Utilization of waste syrup for production of polyunsaturated fatty acids and xanthophylls by aurantiochytrium[J]. Journal of Oleo Science,2013,62(9):729−736. doi: 10.5650/jos.62.729
    [54]
    SUEN Y L, TANG H, HUANG J, et al. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin[J]. J Agric Food Chem,2014,62(51):12392−12398. doi: 10.1021/jf5048578
    [55]
    WATANABE K, ARAFILES K H V, HIGASHI R, et al. Isolation of high carotenoid-producing Aurantiochytrium sp. mutants and improvement of astaxanthin productivity using metabolic information[J]. J Oleo Sci,2018,67(5):571−578. doi: 10.5650/jos.ess17230
    [56]
    CUNNINGHAM F X, J R, GANTT E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis[J]. Plant Cell,2011,23(8):3055−3069. doi: 10.1105/tpc.111.086827
    [57]
    HASUNUMA T, MIYAZAWA S, YOSHIMURA S, et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering[J]. Plant J,2008,55(5):857−868. doi: 10.1111/j.1365-313X.2008.03559.x
  • Cited by

    Periodical cited type(9)

    1. 向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
    2. 赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
    3. 刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
    4. 李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
    5. 张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
    6. 吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
    7. 芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
    8. 孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 . 本站查看
    9. 周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1084) PDF downloads (273) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return