ZHENG Anna, ZHAO Mengyao, YOU Jiangshan, et al. Improving Effect of Chitotriose Guanidine Hydrochloride on Insulin Resistance Cell Model[J]. Science and Technology of Food Industry, 2021, 42(19): 350−356. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100020.
Citation: ZHENG Anna, ZHAO Mengyao, YOU Jiangshan, et al. Improving Effect of Chitotriose Guanidine Hydrochloride on Insulin Resistance Cell Model[J]. Science and Technology of Food Industry, 2021, 42(19): 350−356. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100020.

Improving Effect of Chitotriose Guanidine Hydrochloride on Insulin Resistance Cell Model

More Information
  • Received Date: October 11, 2020
  • Available Online: August 11, 2021
  • In order to evaluate the ability of chitotriose guanidine hydrochloride to improve insulin resistance, this study used high-sugar and high-fat to induce HepG2 cells to establish an insulin resistance cell model, and intervened the cell model with different concentrations and guanidine substituted chitotriose guanidine hydrochloride. Then, indicators such as glucose uptake of model cells were detected. The results showed that 300 µg/mL and 600 µg/mL chitotriose guanidine hydrochloride could significantly increase the glucose uptake of the model cells (P<0.05), while 600 µg/mL displayed a superior effect. Chitotriose guanidine hydrochloride with different guanidine substitution degrees could significantly increase the glucose uptake of model cells (P<0.05), while 78% guanidine substitution had the best effect. Chitotriose guanidine hydrochloride with 600 µg/mL and 78% guanidine substitution degree significantly increased the glucose uptake of the model cells and glycogen content (P<0.05), while reducing the iNOS activity in the cells (P<0.05), and exhibiting a beneficial effect on the insulin-resistant cell model, which provides a theoretical basis for the development of new functional foods that have a good effect in type 2 diabetes intervention.
  • [1]
    Thomsen S K, Raimondo A, Hastoy B. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells[J]. Nat Genet,2018,50(8):1122−1131. doi: 10.1038/s41588-018-0173-1
    [2]
    Hameed I, Masoodi S R, Mir S A, et al. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition[J]. World Journal of Diabetes,2015,6(4):598−612. doi: 10.4239/wjd.v6.i4.598
    [3]
    Saisho Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes[J]. World Journal of Diabetes,2015,6(1):109−124. doi: 10.4239/wjd.v6.i1.109
    [4]
    Ferrannini E. Insulin resistance versus β-cell dysfunction in the pathogenesis of type 2 diabetes[J]. Current Diabetes Reports,2009,9(3):188−189. doi: 10.1007/s11892-009-0031-8
    [5]
    Mcintyre E A, Walker M. Genetics of type 2 diabetes and insulin resistance: Knowledge from human studies[J]. Clinical Endocrinology,2010,57(3):303−311.
    [6]
    方芳, 王洪泉. 胰岛素抵抗的发病机理及治疗[J]. 同济大学学报(医学版),2003,24(4):340−342. [Fang F, Wang H Q. Pathogenesis and management of insulin resistance[J]. Journal of Tongji University (Medical Science),2003,24(4):340−342.
    [7]
    Je J Y, Kim S K. Chapter 21. Chitooligosaccharides as potential nutraceuticals[J]. Advances in Food & Nutrition Research,2012,65:321−336.
    [8]
    Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review[J]. Carbohydrate Polymers,2018,184:243−259. doi: 10.1016/j.carbpol.2017.12.067
    [9]
    Yu S Y, Kwon Y I, Lee C, et al. Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPAR expression[J]. Biofactors,2017,43(1):90−99. doi: 10.1002/biof.1311
    [10]
    Kim H J, Ahn H Y, Kwak J H, et al. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes[J]. Food & Function,2014,5(10):2662−2669.
    [11]
    Jo S H, Ha K S, Lee J W, et al. The reduction effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose levels in healthy individuals[J]. Food Science and Biotechnology,2014,23(3):971−973. doi: 10.1007/s10068-014-0131-3
    [12]
    Li M S Y, Hu X W, Xu Y Q, et al. A possible mechanism of metformin in improving insulin resistance in diabetic rat models[J]. International Journal of Endocrinology,2019,2019(9):1−9.
    [13]
    Wang Y, An H Y, Liu T, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK[J]. Cell Reports,2019,29(6):1511−1523. doi: 10.1016/j.celrep.2019.09.070
    [14]
    Tanner C, Wang G, Liu N, et al. Metformin: Time to review its role and safety in chronic kidney disease[J]. The Medical Journal of Australia,2019,211(1):37−42. doi: 10.5694/mja2.50239
    [15]
    Wang H H, Zhou Y X, Wang Y, et al. Biguanidine functional chitooligosaccharide modified reverse osmosis membrane with improved anti-biofouling property[J]. Rsc Advances,2018,8(73):41938−41949. doi: 10.1039/C8RA09291E
    [16]
    Reitz A B, Tuman R W, Marchione C S, et al. Carbohydrate biguanides as potential hypoglycemic agents[J]. Journal of Medicinal Chemistry,1989,32(9):2110−2116. doi: 10.1021/jm00129a015
    [17]
    Zhang S S, Zhang H, Wang L, et al. Microwave-assisted synthesis of chitosan biguanidine hydrochloride and its regulation on InsR and GLUT2 in insulin resistant HepG2 cells[J]. RSC Advances,2017,7(17):10108−10117. doi: 10.1039/C6RA25998G
    [18]
    Zhang H, Zhang S S, Wang L, et al. Chitooligosaccharide guanidine inhibits high glucose-induced activation of DAG/PKC pathway by regulating expression of GLUT2 in type 2 diabetic nephropathy rats[J]. Journal of Functional Foods,2018,41:41−47. doi: 10.1016/j.jff.2017.12.032
    [19]
    王园园, 刘晓非, 邹雅露, 等. 壳寡糖胍对胰岛素抵抗及相关蛋白的作用[J]. 天津大学学报,2020,53(5):459−466. [Wang Y Y, Liu X F, Zou Y L, et al. Effects of chitooligosaccharide guanidine on insulin resistance and related protein[J]. Journal of Tianjin University,2020,53(5):459−466.
    [20]
    Wang L, Liu Z B, LIU X F, et al. Microwave-assisted synthesis of chitooligosaccharide guanidine and its effect on GLUT4-dependent glucose uptake through an Akt-activated protein kinase signaling pathway in L6 skeletal muscle cells[J]. Rsc Advances,2016,6(93):90777−90785. doi: 10.1039/C6RA17654B
    [21]
    Liu Q W, Li Y, Jin X, et al. Microwave-assisted synthesis of chitosan biguanidine hydrochloride and its antioxidant activity in vitro[J]. Journal of Applied Polymer Science,2016,133(25).
    [22]
    刘迪迪, 邱军强, 程翠林, 等. HepG2细胞胰岛素抵抗模型建立影响因素研究[J]. 食品与药品,2018,20(1):1−6. [Liu D D, Qiu J Q, Cheng C L, et al. Influencing factors on establishment of insulin-resistant HepG2 cell model[J]. Food and Drug,2018,20(1):1−6. doi: 10.3969/j.issn.1672-979X.2018.01.001
    [23]
    Wang X L, Jiang H, Zhang N, et al. Anti-diabetic activities of agaropectin-derived oligosaccharides from Gloiopeltis furcata via regulation of mitochondrial function[J]. Carbohydrate Polymers,2019,229:115482.
    [24]
    Yan F J, Dai G H, Zheng X D. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice[J]. Journal of Nutritional Biochemistry,2016,36:68−80. doi: 10.1016/j.jnutbio.2016.07.004
  • Cited by

    Periodical cited type(7)

    1. 刘亚兵,罗学尹,戴宇樵,王敏,蒲璐璐,潘科,刘忠英,李琴. 灵芝菌处理对夏秋黑茶梗品质的影响. 沈阳农业大学学报. 2023(03): 289-295 .
    2. 孟圆,夏婷,程艳,耿贝贝,权冰艳,宋睿喆,于金浩,王敏,白晓丽. 碱法提取普洱茶渣膳食纤维的工艺优化. 食品研究与开发. 2023(18): 158-164 .
    3. 高丽娟,郜春霞,吴佳琪,吴修祯,李凯. 响应面法优化爬山虎不溶性膳食纤维反提取工艺. 河南农业. 2023(36): 56-59 .
    4. 许婧. 茶叶保健食品加工技术及发展趋势分析. 现代食品. 2022(04): 70-73 .
    5. 王彤辉,相堂永,徐姗,顾依,任舒静,江勇,杨帆,陈志鹏. 萌芽黑青稞喷干粉的制备工艺优化. 食品研究与开发. 2022(10): 156-165 .
    6. 皮小弟,罗瑞婷,李叶青,邹志群,吴思毅,黄志远. 豆渣水溶性膳食纤维的复合酶法提取及其应用于可食性膜研究. 保鲜与加工. 2022(10): 56-62 .
    7. 牛潇潇,王杰,王宁,梁亮,韩育梅,杨杨. 超微粉碎对马铃薯渣理化性质和微观结构的影响. 中国粮油学报. 2022(12): 84-91 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (238) PDF downloads (21) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return