Citation: | HU Xiatian, ZHANG Fengqing, YU Min. Separation and Purification of Kudinoside D and Its Nanoparticle Preparation and Characterization[J]. Science and Technology of Food Industry, 2021, 42(19): 15−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090324. |
[1] |
张灿坤. 苦丁茶的原植物及商品调查[J]. 中药材,1994,17(3):14−15. [Zhang Cankun. Original plants and market drugs investigation of Kudingcha[J]. Journal of Chinese Medicinal Materials,1994,17(3):14−15. doi: 10.3321/j.issn:1001-4454.1994.03.016
|
[2] |
Gan R Y, Zhang D, Wang M, et a1. Health benefits of bioactive compounds from the genus ilex, a source of traditional caffeinated beverages[J]. Nutrients,2018,10(11):1682. doi: 10.3390/nu10111682
|
[3] |
黄燕, 郑金燕, 杨刚劲, 等. 苦丁茶冬青根的化学成分研究[J]. 中草药,2015,46(16):2371−2376. [Huang Yan, Zheng Jinyan, Yang Gangjin, et a1. Chemical constituents in roots of Ilex Kudingcha[J]. Chinese Traditional and Herbal Drugs,2015,46(16):2371−2376.
|
[4] |
Svenja Wüpper, Kai Lüersen, Gerald Rimbach. Chemical composition, bioactivity and safety aspects of Kuding tea—from beverage to herbal extract[J]. Nutrients. 2020, 12(9): 2796.
|
[5] |
Song C, Yu Q, Li X, et a1. The hypolipidemic effect of total saponins from Kuding tea in high-fat diet-induced hyperlipidemic mice and its composition characterized by UPLC-QTOF-MS/MS[J]. Journal of Food Science,2016,81(5):1313−1319. doi: 10.1111/1750-3841.13299
|
[6] |
李小华. 苦丁茶皂苷降血脂作用的成分研究[D]. 武汉: 华中科技大学, 2016.
Li Xiaohua. A study on composition and hypolipidemic effect of total saponins from Kuding tea[D]. Wuhan: Huazhong University of Science and Technology, 2016.
|
[7] |
耿江枫. 苦丁冬青胰脂肪酶抑制活性成分研究[D]. 贵阳: 贵州师范大学, 2016.
Geng Jiangfeng. Pancreatic lipases inhibition active constituents from Ilex Kudingcha C. J. Tseng[D]. Guiyang: Guiyang Normal University, 2016.
|
[8] |
Zhang T T, Hu T, Jiang J G, et a1. Antioxidant and anti-inflammatory effects of polyphenols extracted fromIlex latifolia Thunb[J]. RSC Advances,2018,8(13):7134−7141. doi: 10.1039/C7RA13569F
|
[9] |
Yi H, Zhou J, Shang X Y, et a1. Multi-component analysis of Ilex Kudingcha C. J. Tseng by a single marker quantification method and chemometric discrimination of HPLC fingerprints[J]. Molecules,2018,23(4):854. doi: 10.3390/molecules23040854
|
[10] |
Zhang H L, Zou X Q, Huang Q Y, et a1. Effects of Kudingcha nanoparticles in hyperlipidaemic rats induced by a high fat diet[J]. Cellular Physiology and Biochemistry,2018,45:2257−2267. doi: 10.1159/000488171
|
[11] |
Tang L, Jiang Y, Tian X M, et a1. Triterpene saponins from the leaves of Ilex Kudingcha[J]. Journal of Asian Nmuml Products Research,2009,11(6):554−561. doi: 10.1080/10286020902937491
|
[12] |
Tang L, Jiang Y, Chang H T, et a1. Triterpene saponins from the leaves of Ilex Kudingcha[J]. Journal of Natural Products,2005,68(8):1169−1 174. doi: 10.1021/np050043z
|
[13] |
北京大学. 苦丁茶皂苷D的制药用途: 中国, ZL2012101353603[P]. 2013-11-06.
Beijing. Pharmaceutical use of Kudingcha saponin D: China, ZL2012101353603[P]. 2013-11-06.
|
[14] |
盛竹君, 徐维平, 徐婷娟, 等. 纳米技术在难容性药物制剂研究中的应用[J]. 广州化工,2016,44(1):13−15. [Sheng Zhujun, Xu Weiping, XU Tingjuan, et a1. Application of nanotechnology in pharmaceutical research for poorly soluble drugs[J]. Guangzhou Chemical Industry,2016,44(1):13−15. doi: 10.3969/j.issn.1001-9677.2016.01.007
|
[15] |
王婷, 顾永卫, 刘继勇, 等. 脂质体纳米载体在改善难溶性中药成分口服吸收中的作用[J]. 药学服务与研究,2020,20(2):140−144. [Wang Ting, Gu Yongwei, Liu Jiyong, et a1. Application of lipid nanocarriers in improving oral absorption of poorly soluble traditional Chinese medicine ingredients[J]. Pharmaceutical Care and Research,2020,20(2):140−144. doi: 10.5428/pcar20200214
|
[16] |
岳鹏飞, 刘阳, 谢锦, 等. 药物纳米晶体制备技术30年发展回顾与展望[J]. 药学学报,2018,53(4):529−537. [Yue Pengfei, Liu Yang, Xie Jin, et a1. Review and prospect on preparation technology of drug nanocrystals in the past thirty years[J]. Acta Pharmaceutica Sinica,2018,53(4):529−537.
|
[17] |
金红妍, 李云飞, 高钟镐. 纳米粒载体研发及其对生物效应影响的研究进展[J]. 中国药学杂志,2017,52(10):814−818. [Jin Hongyan, Li Yunfei, Gao Zhonggao. Research progress of nanoparticle carriers and their biological effects[J]. Chinese Pharmaceutical Journal,2017,52(10):814−818.
|
[18] |
潘佐, 杨晓峰, 刘红耀. 纳米粒子的生物学性能及光学应用前景[J]. 中国现代医药杂志,2015(11):98−102. [Pan Zuo, Yang Xiaofeng, Liu Hongyao. The biological properties and optical application prospects of nanoparticles[J]. Modern Medicine Journal of China,2015(11):98−102. doi: 10.3969/j.issn.1672-9463.2015.11.034
|
[19] |
陈云艳, 瞿鼎, 郭梦斐, 等. 抗肿瘤中药纳米给药系统的研究进展[J]. 世界科学技术-中医药现代化,2018,20(3):431−438. [Chen Yunyan, Qu Dingguo, Mengfei, et a1. Review on antitumor nano-sized drug delivery system based on traditional chinese medicine[J]. World Science and Technology-Modernization of Traditional Chinese Medicine,2018,20(3):431−438.
|
[20] |
Shen J Y, Zhao Z M,Wei S, et al. Ginsenoside Rg1 nanoparticle penetrating the blood–brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction[J]. Int J Nanomedicine. 2017, 12: 6477-6486.
|
[21] |
贾玉萍, 李秀娥, 邱文旭, 等. γ-聚谷氨酸的研究及应用进展[J]. 鲁东大学学报(自然科学版),2019,35(2):122−128. [Jia Yuping, Li Xiue, Qiu Wenxu, et a1. Research and application of γ-polyglutamic acid[J]. Ludong University Journal(Natural Science Edition),2019,35(2):122−128.
|
[22] |
Zhang L, Wang T, LI Q, et al. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro anin vivo[J]. Int J Nanomedicine,2016,11:2663−2673. doi: 10.2217/nnm-2016-0156
|
[23] |
Zhang L, Geng X, Zhou J, et al. Fabrication of poly(γ-glutamic acid) -based biopolymer as the targeted drug delivery system with enhanced cytotoxicity to APN/CD13 over-expressed cells[J]. Drug Target,2015,23(5):453−461. doi: 10.3109/1061186X.2014.1003139
|
[24] |
Geng X, Ye H, Feng Z, et al. Synthesis and characterization of cisplatin-loaded, EGFR-targeted biopolymer and in vitro evaluation for targeted delivery[J]. J Biomed Mater Res A,2012,100(10):2839−2848.
|
[25] |
沈俊逸, 赵智明, 刘春丽, 等. 人参皂苷Rg1纳米颗粒的构建、和体外功能研究[J]. 东南国防医药, 2019, 11(1): 1-6.
Construction and characterization of ginsenoside Rg1 nanoparticles and its in vitro activity[J]. Military Medical Journal of Southeast China, 2019, 11(1): 1-6.
|
[26] |
倪帅帅. 苦丁茶冬青化学成分及其与蛋白质相互作用机理研究[D]. 长春: 吉林农业大学, 2017.
Ni Shuaishuai. Studies on the chemical constituents of Ilex Kudingcha c. j. Tseng and its interaction with proteins[D]. Changchun: Jilin Agricultural University, 2017.
|
[27] |
潘盈盈. 长效降血糖GLP1衍生物纳米颗粒的制备及生物学活性研究[D]. 上海: 华东师范大学, 2015.
Pan Yingying. Development and bioactivity study of long-acting GLP-1 derivative nanoparticles[D]. Shanghai: East China Normal University, 2015.
|
[28] |
Ou yang M A, Yang C R, Chen Z L, et a1. Triterpenes and triterpenoid glycosides from the leaves of Ilex Kudincha[J]. Phytochemistry,1996,41(3):871−877. doi: 10.1016/0031-9422(95)00639-7
|
[29] |
Ashiuchi M, Shimanouchi K, Horiuchi T, et al. Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214[J]. Biosci Biotechnol Biochem,2006,70(7):1794−1797. doi: 10.1271/bbb.60082
|
[30] |
Osera C, Amati G, Calvo C, et al. SwrAA activates poly-glutamate synthesis in addition to swarming in Bacillus subtilis[J]. Microbiology,2009,155(7):2282−2287. doi: 10.1099/mic.0.026435-0
|