HU Xiatian, ZHANG Fengqing, YU Min. Separation and Purification of Kudinoside D and Its Nanoparticle Preparation and Characterization[J]. Science and Technology of Food Industry, 2021, 42(19): 15−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090324.
Citation: HU Xiatian, ZHANG Fengqing, YU Min. Separation and Purification of Kudinoside D and Its Nanoparticle Preparation and Characterization[J]. Science and Technology of Food Industry, 2021, 42(19): 15−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090324.

Separation and Purification of Kudinoside D and Its Nanoparticle Preparation and Characterization

More Information
  • Received Date: September 29, 2020
  • Available Online: August 08, 2021
  • Objective: To improve the water solubility of Kudinoside D. Methods: Using atmospheric column chromatography, semi-preparative high performance liquid chromatography and other means to separate and purify saponins from Ilex kudingcha C.J.Tseng, the compound Kudinoside D was obtained. Using polyglutamic acid (γ-PGA) and L-phenylalanine ethyl ester (L-PAE) as raw materials, Kudinoside D nanoparticles were prepared by precipitation method and dialysis method respectively. The physical and chemical properties of nanoparticles were characterized by transmission electron microscopy and dynamic nanoparticle size analyzer, and their in vitro drug release characteristics were investigated by dialysis. Results: Compared with the precipitation method, the encapsulation efficiency and drug loading of Kudinoside D nanoparticles prepared by the dialysis method were increased by 1.5 and 4.5 times, respectively, the encapsulation rate reached 65.46%, and the drug loading reached 13.24%. Kudinoside D nanoparticles had a regular spherical shape with an average particle size of (75±25) nm and a Zeta potential of 33.7. Conclusion: In vitro drug release experiments show that Kudinoside D nanoparticles can significantly improve the water solubility of the drug and have a good sustained release effect in vitro.
  • [1]
    张灿坤. 苦丁茶的原植物及商品调查[J]. 中药材,1994,17(3):14−15. [Zhang Cankun. Original plants and market drugs investigation of Kudingcha[J]. Journal of Chinese Medicinal Materials,1994,17(3):14−15. doi: 10.3321/j.issn:1001-4454.1994.03.016
    [2]
    Gan R Y, Zhang D, Wang M, et a1. Health benefits of bioactive compounds from the genus ilex, a source of traditional caffeinated beverages[J]. Nutrients,2018,10(11):1682. doi: 10.3390/nu10111682
    [3]
    黄燕, 郑金燕, 杨刚劲, 等. 苦丁茶冬青根的化学成分研究[J]. 中草药,2015,46(16):2371−2376. [Huang Yan, Zheng Jinyan, Yang Gangjin, et a1. Chemical constituents in roots of Ilex Kudingcha[J]. Chinese Traditional and Herbal Drugs,2015,46(16):2371−2376.
    [4]
    Svenja Wüpper, Kai Lüersen, Gerald Rimbach. Chemical composition, bioactivity and safety aspects of Kuding tea—from beverage to herbal extract[J]. Nutrients. 2020, 12(9): 2796.
    [5]
    Song C, Yu Q, Li X, et a1. The hypolipidemic effect of total saponins from Kuding tea in high-fat diet-induced hyperlipidemic mice and its composition characterized by UPLC-QTOF-MS/MS[J]. Journal of Food Science,2016,81(5):1313−1319. doi: 10.1111/1750-3841.13299
    [6]
    李小华. 苦丁茶皂苷降血脂作用的成分研究[D]. 武汉: 华中科技大学, 2016.

    Li Xiaohua. A study on composition and hypolipidemic effect of total saponins from Kuding tea[D]. Wuhan: Huazhong University of Science and Technology, 2016.
    [7]
    耿江枫. 苦丁冬青胰脂肪酶抑制活性成分研究[D]. 贵阳: 贵州师范大学, 2016.

    Geng Jiangfeng. Pancreatic lipases inhibition active constituents from Ilex Kudingcha C. J. Tseng[D]. Guiyang: Guiyang Normal University, 2016.
    [8]
    Zhang T T, Hu T, Jiang J G, et a1. Antioxidant and anti-inflammatory effects of polyphenols extracted fromIlex latifolia Thunb[J]. RSC Advances,2018,8(13):7134−7141. doi: 10.1039/C7RA13569F
    [9]
    Yi H, Zhou J, Shang X Y, et a1. Multi-component analysis of Ilex Kudingcha C. J. Tseng by a single marker quantification method and chemometric discrimination of HPLC fingerprints[J]. Molecules,2018,23(4):854. doi: 10.3390/molecules23040854
    [10]
    Zhang H L, Zou X Q, Huang Q Y, et a1. Effects of Kudingcha nanoparticles in hyperlipidaemic rats induced by a high fat diet[J]. Cellular Physiology and Biochemistry,2018,45:2257−2267. doi: 10.1159/000488171
    [11]
    Tang L, Jiang Y, Tian X M, et a1. Triterpene saponins from the leaves of Ilex Kudingcha[J]. Journal of Asian Nmuml Products Research,2009,11(6):554−561. doi: 10.1080/10286020902937491
    [12]
    Tang L, Jiang Y, Chang H T, et a1. Triterpene saponins from the leaves of Ilex Kudingcha[J]. Journal of Natural Products,2005,68(8):1169−1 174. doi: 10.1021/np050043z
    [13]
    北京大学. 苦丁茶皂苷D的制药用途: 中国, ZL2012101353603[P]. 2013-11-06.

    Beijing. Pharmaceutical use of Kudingcha saponin D: China, ZL2012101353603[P]. 2013-11-06.
    [14]
    盛竹君, 徐维平, 徐婷娟, 等. 纳米技术在难容性药物制剂研究中的应用[J]. 广州化工,2016,44(1):13−15. [Sheng Zhujun, Xu Weiping, XU Tingjuan, et a1. Application of nanotechnology in pharmaceutical research for poorly soluble drugs[J]. Guangzhou Chemical Industry,2016,44(1):13−15. doi: 10.3969/j.issn.1001-9677.2016.01.007
    [15]
    王婷, 顾永卫, 刘继勇, 等. 脂质体纳米载体在改善难溶性中药成分口服吸收中的作用[J]. 药学服务与研究,2020,20(2):140−144. [Wang Ting, Gu Yongwei, Liu Jiyong, et a1. Application of lipid nanocarriers in improving oral absorption of poorly soluble traditional Chinese medicine ingredients[J]. Pharmaceutical Care and Research,2020,20(2):140−144. doi: 10.5428/pcar20200214
    [16]
    岳鹏飞, 刘阳, 谢锦, 等. 药物纳米晶体制备技术30年发展回顾与展望[J]. 药学学报,2018,53(4):529−537. [Yue Pengfei, Liu Yang, Xie Jin, et a1. Review and prospect on preparation technology of drug nanocrystals in the past thirty years[J]. Acta Pharmaceutica Sinica,2018,53(4):529−537.
    [17]
    金红妍, 李云飞, 高钟镐. 纳米粒载体研发及其对生物效应影响的研究进展[J]. 中国药学杂志,2017,52(10):814−818. [Jin Hongyan, Li Yunfei, Gao Zhonggao. Research progress of nanoparticle carriers and their biological effects[J]. Chinese Pharmaceutical Journal,2017,52(10):814−818.
    [18]
    潘佐, 杨晓峰, 刘红耀. 纳米粒子的生物学性能及光学应用前景[J]. 中国现代医药杂志,2015(11):98−102. [Pan Zuo, Yang Xiaofeng, Liu Hongyao. The biological properties and optical application prospects of nanoparticles[J]. Modern Medicine Journal of China,2015(11):98−102. doi: 10.3969/j.issn.1672-9463.2015.11.034
    [19]
    陈云艳, 瞿鼎, 郭梦斐, 等. 抗肿瘤中药纳米给药系统的研究进展[J]. 世界科学技术-中医药现代化,2018,20(3):431−438. [Chen Yunyan, Qu Dingguo, Mengfei, et a1. Review on antitumor nano-sized drug delivery system based on traditional chinese medicine[J]. World Science and Technology-Modernization of Traditional Chinese Medicine,2018,20(3):431−438.
    [20]
    Shen J Y, Zhao Z M,Wei S, et al. Ginsenoside Rg1 nanoparticle penetrating the blood–brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction[J]. Int J Nanomedicine. 2017, 12: 6477-6486.
    [21]
    贾玉萍, 李秀娥, 邱文旭, 等. γ-聚谷氨酸的研究及应用进展[J]. 鲁东大学学报(自然科学版),2019,35(2):122−128. [Jia Yuping, Li Xiue, Qiu Wenxu, et a1. Research and application of γ-polyglutamic acid[J]. Ludong University Journal(Natural Science Edition),2019,35(2):122−128.
    [22]
    Zhang L, Wang T, LI Q, et al. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro anin vivo[J]. Int J Nanomedicine,2016,11:2663−2673. doi: 10.2217/nnm-2016-0156
    [23]
    Zhang L, Geng X, Zhou J, et al. Fabrication of poly(γ-glutamic acid) -based biopolymer as the targeted drug delivery system with enhanced cytotoxicity to APN/CD13 over-expressed cells[J]. Drug Target,2015,23(5):453−461. doi: 10.3109/1061186X.2014.1003139
    [24]
    Geng X, Ye H, Feng Z, et al. Synthesis and characterization of cisplatin-loaded, EGFR-targeted biopolymer and in vitro evaluation for targeted delivery[J]. J Biomed Mater Res A,2012,100(10):2839−2848.
    [25]
    沈俊逸, 赵智明, 刘春丽, 等. 人参皂苷Rg1纳米颗粒的构建、和体外功能研究[J]. 东南国防医药, 2019, 11(1): 1-6.

    Construction and characterization of ginsenoside Rg1 nanoparticles and its in vitro activity[J]. Military Medical Journal of Southeast China, 2019, 11(1): 1-6.
    [26]
    倪帅帅. 苦丁茶冬青化学成分及其与蛋白质相互作用机理研究[D]. 长春: 吉林农业大学, 2017.

    Ni Shuaishuai. Studies on the chemical constituents of Ilex Kudingcha c. j. Tseng and its interaction with proteins[D]. Changchun: Jilin Agricultural University, 2017.
    [27]
    潘盈盈. 长效降血糖GLP1衍生物纳米颗粒的制备及生物学活性研究[D]. 上海: 华东师范大学, 2015.

    Pan Yingying. Development and bioactivity study of long-acting GLP-1 derivative nanoparticles[D]. Shanghai: East China Normal University, 2015.
    [28]
    Ou yang M A, Yang C R, Chen Z L, et a1. Triterpenes and triterpenoid glycosides from the leaves of Ilex Kudincha[J]. Phytochemistry,1996,41(3):871−877. doi: 10.1016/0031-9422(95)00639-7
    [29]
    Ashiuchi M, Shimanouchi K, Horiuchi T, et al. Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214[J]. Biosci Biotechnol Biochem,2006,70(7):1794−1797. doi: 10.1271/bbb.60082
    [30]
    Osera C, Amati G, Calvo C, et al. SwrAA activates poly-glutamate synthesis in addition to swarming in Bacillus subtilis[J]. Microbiology,2009,155(7):2282−2287. doi: 10.1099/mic.0.026435-0
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return