CHEN Tingting, WU Lixia, XIAO Gaosheng, et al. Extraction of Soluble Dietary Fiber from Wheat Bran by Ultrasonic Pretreatment-Citric Acid Assisted Subcritical Water Extraction[J]. Science and Technology of Food Industry, 2021, 42(9): 201−206. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090313.
Citation: CHEN Tingting, WU Lixia, XIAO Gaosheng, et al. Extraction of Soluble Dietary Fiber from Wheat Bran by Ultrasonic Pretreatment-Citric Acid Assisted Subcritical Water Extraction[J]. Science and Technology of Food Industry, 2021, 42(9): 201−206. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090313.

Extraction of Soluble Dietary Fiber from Wheat Bran by Ultrasonic Pretreatment-Citric Acid Assisted Subcritical Water Extraction

More Information
  • Received Date: September 29, 2020
  • Available Online: March 15, 2021
  • Soluble dietary fiber (SDF) was extracted from wheat bran by ultrasonic pretreatment-citric acid assisted subcritical water extraction (USWEC). The effects ofultrasonic pretreatment power, citric acid/wheat bran liquid-to-soild ratio, subcritical water extraction (SWE) temperature and time on extraction yield of SDF were investigated by using single factor experiments. On this basis, the response surface optimization method was further designed to optimize the extraction process parameters. The results showed that the extraction conditions were optimized as follows: Ultrasonic pretreatment power 195 W, citric acid/wheat bran liquid-to-soild ratio 39:1 mL/g, SWE temperature 179 ℃ and time 30 min, and the SDF extraction yield was 41.00% ± 0.29%. Therefore, the developed method in this study can greatly improve the extraction yield of SDF, which has the advantages of short extraction time, green and environmental protection. This study provides a technological reference for industrial production of SDF from wheat bran.
  • [1]
    李琦, 曾凡坤, 华蓉, 等. 麦麸膳食纤维理化特性、制备方法及应用研究进展[J]. 食品工业科技,2020,41(17):352−357, 367.
    [2]
    王学敏, 伍敏晖, 陈朝青, 等. 燕麦纤维和小麦纤维对小鼠的润肠通便功能比较[J]. 食品工业科技,2019,40(23):296−299, 305.
    [3]
    朱玉. 小米糠膳食纤维降胆固醇活性的研究[D]. 南京: 南京农业大学, 2015.
    [4]
    田维, 张荣涛, 李悦绮, 等. 绿茶膳食纤维粉对大鼠的减肥降脂作用研究[J]. 粮食与饲料工业,2019(3):49−52.
    [5]
    冯雁波, 包怡红. 超微粉碎对松仁膳食纤维体外降血糖、降血脂功能的影响[J]. 食品工业科技,2016,37(23):342−346, 350.
    [6]
    Arun K B, Thomas S, Reshmitha T R, et al. Dietary fibre and phenolic-rich extracts from Musa paradisiaca inflorescence ameliorates type 2 diabetes and associated cardiovascular risks[J]. Journal of Functional Foods,2017,31:198−207. doi: 10.1016/j.jff.2017.02.001
    [7]
    Li Q, Holford T R, Zhang Y W, et al. Dietary fiber intake and risk of breast cancer by menopausal and estrogen receptor status[J]. European Journal of Nutrition,2013,52(1):217−223. doi: 10.1007/s00394-012-0305-9
    [8]
    张进良, 张翔, 郭艳. 葡萄中膳食纤维含量与面条风味的研究[J]. 粮食与饲料工业,2019(3):28−31.
    [9]
    王彪. 青稞膳食纤维的改性及其应用研究[D]. 芜湖: 安徽工程大学, 2019.
    [10]
    俞才荣, 安甜甜, 赵秀红. 营养膳食纤维夹心饼干的研制[J]. 农业科技与装备,2018(5):58−61.
    [11]
    方东亚. 改性笋头膳食纤维的结构、功能性质及在酸奶中的应用研究[D]. 福州: 福建农林大学, 2019.
    [12]
    Michael P, Susanne S E, Silvia A, et al. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization[J]. LWT - Food Science and Technology, 2014, 56(2): 211−221.
    [13]
    叶秋萍, 曾新萍, 郑晓倩. 膳食纤维的制备技术及理化性能的研究进展[J]. 食品研究与开发,2019,49(17):212−217. doi: 10.12161/j.issn.1005-6521.2019.17.037
    [14]
    孙海燕, 杨梦凡, 郝丹青, 等. 膳食纤维的研究现状[J]. 保鲜与加工,2019,19(6):238−242.
    [15]
    Kamaljit V, Raymond M, Lloyd S, et al. Applications and opportunities for ultrasound assisted extraction in the food industry-A review[J]. Innovative Food Science & Emerging Technologies,2008,9(2):161−169.
    [16]
    Yan J K, Wu L X, Cai W D, et al. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran[J]. Food Chemistry,2019,298( 15):124987.
    [17]
    Maran J P, Priya B, Al-Dhabi N A, et al. Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana[J]. Ultrasonics Sonochemistry,2016,35:204−209.
    [18]
    Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [19]
    Yan J K, Wang Y Y, Qiu W Y, et al. Ultrasound synergized with three-phase partitioning for extraction and separation of Corbicula fluminea polysaccharides and possible relevant mechanisms[J]. Ultrasonics Sonochemistry,2017,40:128−134.
    [20]
    Gu J Y, Zhang H H, Zhang J X, et al. Optimization, characterization, rheological study and immune activities of polysaccharide from Sagittaria sagittifolia L[J]. Carbohydrate Polymers,2020,246:116595. doi: 10.1016/j.carbpol.2020.116595
    [21]
    Zhao C, Yang R F, Qiu T Q. Ultrasound-enhanced subcritical water extraction of polysaccharides from Lycium barbarum L.[J]. Separation and Purification Technology,2013,120:141−147. doi: 10.1016/j.seppur.2013.09.044
    [22]
    Cai W R, Gu X H, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta[J]. Carbohydrate Polymers,2008,71(3):403−410. doi: 10.1016/j.carbpol.2007.06.008
    [23]
    顾艳耿, 胡仲秋, 邱月, 等. 亚临界水法提取茶多糖及抗氧化活性研究[J]. 食品科技,2019,44(6):194−201.
    [24]
    Pujari V, Chandra T S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii[J]. Process Biochemistry,2000,36(1−2):31−37. doi: 10.1016/S0032-9592(00)00173-4
    [25]
    Liu J Z, Weng L P, Zhang Q L, et al. Optimization of glucose oxidase production by Aspergillus niger, in a benchtop bioreactor using response surface methodology[J]. World Journal of Microbiology & Biotechnology,2003,19(3):317−323.
    [26]
    Adinarayana K, Ellaiah P. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp[J]. Journal of Pharmaceutical Sciences,2002,5(3):272−278.
    [27]
    Wu D F, Zhou J C, Li Y D. Effect of the sulfidation process on the mechanical properties of a CoMoP/Al2O3 hydrotreating catalyst[J]. Chemical Engineering Science,2009,64(2):198−206. doi: 10.1016/j.ces.2008.10.014
  • Cited by

    Periodical cited type(12)

    1. 崔蓬勃,梁健亲,程天宇,吕飞,丁玉庭. 日本鲭的保鲜技术研究进展. 水产学报. 2024(07): 3-17 .
    2. 罗振玲,高海波,杨挺,付余. 超高效液相色谱-串联质谱法同时测定小黄花鱼中9种生物胺. 食品工业科技. 2023(05): 251-257 . 本站查看
    3. 杨梓璐,石懿平,郑火建,李洪彪,汪立平. 产胺菌拮抗菌的筛选鉴定及其抑菌物质特性研究. 湖北民族大学学报(自然科学版). 2023(03): 308-313+330 .
    4. 黄岩,鲜双,李倩,陈其青,徐飞,陈安均. 豇豆泡菜中产生物胺菌株的筛选鉴定及其产胺特性研究. 食品与发酵工业. 2023(23): 119-126 .
    5. 高建操,杜金梁,邵乃麟,张幸,李昺之,宋超,徐跑,徐钢春. 中华绒螯蟹质量安全新兴检测与控制技术研究进展. 中国渔业质量与标准. 2022(04): 62-70 .
    6. 杨姗姗,王晓雯,林翠苹. 水产品中生物胺的研究进展. 青岛农业大学学报(自然科学版). 2021(01): 65-73 .
    7. 王纯纯,刘智禹,黄鹭强. 水产品中微生物产胺的研究概况. 福建轻纺. 2021(11): 8-12 .
    8. 李璇,刘琪,朱蔚姗,陈静,张佩娜,蒋立文. 不同发酵豆制品中生物胺调查分析. 食品安全质量检测学报. 2020(01): 298-305 .
    9. 李少丽,邓建朝,李春生,杨贤庆,吴燕燕,陈胜军,马海霞. 生食大眼金枪鱼中生物胺产生菌的分离与鉴定. 食品与发酵工业. 2020(14): 121-126 .
    10. 孙项丽,王联珠,郭莹莹,江艳华,王婧媛,尹大芳. 不同储藏温度下鲅鱼组胺含量与其品质变化的关系. 南方农业学报. 2020(08): 2005-2012 .
    11. 孙项丽,郭莹莹,于秀娟,王静媛,文艺晓,王联珠. 鲭鱼品质评价及品质变化与组胺含量研究进展. 食品安全质量检测学报. 2019(12): 3708-3713 .
    12. 邓建朝,李少丽,杨贤庆,陈胜军,吴燕燕,李春生,马海霞,荣辉. 金枪鱼中生物胺的防控技术与检测技术的研究发展. 食品与发酵工业. 2019(24): 262-268 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (230) PDF downloads (15) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return