ZHOU Linjie, SHI Wenzheng, LU Ying. Research on Hypoallergenic Aquatic Products Processing Technology[J]. Science and Technology of Food Industry, 2021, 42(21): 414−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090301.
Citation: ZHOU Linjie, SHI Wenzheng, LU Ying. Research on Hypoallergenic Aquatic Products Processing Technology[J]. Science and Technology of Food Industry, 2021, 42(21): 414−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090301.

Research on Hypoallergenic Aquatic Products Processing Technology

More Information
  • Received Date: September 28, 2020
  • Available Online: August 31, 2021
  • In recent years, allergies caused by consumption of aquatic products are increasing, due to a spurt processing in consumption of aquatic products. Food allergy is an important public health issue around the world. Therefore, the hypoallergenic or non-allergenic food by processed technology is of critical significance to allergic people. The research progress of aquatic products allergen processing and reduction technology are summarized in this article. The main types of aquatic product allergens and details of different food processing technologies effects on aquatic products allergens are introduced. The hypoallergenic aquatic products research status and development trends are analyzed in order to provide guidance for the future research.
  • [1]
    Renz H, Allen K J, Sicherer S H, et al. Food allergy[J]. Nature Reviews Disease Primers,2018,4(1):17098. doi: 10.1038/nrdp.2017.98
    [2]
    Gupta R S, Warren C M, Smith B M, et al. Prevalence and severity of food allergies among US adults[J]. JAMA Network Open,2019,2(1):e185630. doi: 10.1001/jamanetworkopen.2018.5630
    [3]
    Grabenhenrich L B, Dolle S, Moneret-Vautrin A, et al. Anaphylaxis in children and adolescents: The European anaphylaxis registry[J]. The Journal of Allergy and Clinical Immunology,2016,137(4):1128−1137.e1. doi: 10.1016/j.jaci.2015.11.015
    [4]
    Sampson H A, O'Mahony L, Burks A W, et al. Mechanisms of food allergy[J]. The Journal of Allergy and Clinical Immunology,2018,141(1):11−19. doi: 10.1016/j.jaci.2017.11.005
    [5]
    Kobayashi Y, Yang T, Yu C T, et al. Quantification of major allergen parvalbumin in 22 species of fish by SDS-PAGE.[J]. Food Chemistry,2016,194:345−353. doi: 10.1016/j.foodchem.2015.08.037
    [6]
    蔡秋凤, 刘光明, 王瑞芳, 等. 鱼类主要过敏原小清蛋白的检测[J]. 中国免疫学杂志,2010,26(8):716−720,723. [Cai Qiufeng, Liu Guangming, Wang Ruifang, et al. Detection of major allergen albumin in fish[J]. Chinese Journal of Immunology,2010,26(8):716−720,723. doi: 10.3969/j.issn.1000-484X.2010.08.010
    [7]
    Faber M A, Pascal M, El Kharbouchi O, et al. Shellfish allergens: tropomyosin and beyond[J]. Allergy,2017,72(6):842−848. doi: 10.1111/all.13115
    [8]
    Fernandes T J R, Costa J, Oliveira M B P P, et al. An overview on fish and shellfish allergens and current methods of detection[J]. Food and Agricultural Immunology,2015,26(6):848−869. doi: 10.1080/09540105.2015.1039497
    [9]
    Ruethers T, Taki A C, Johnston E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Mol Immunol,2018,100:28−57. doi: 10.1016/j.molimm.2018.04.008
    [10]
    徐静, 李一尘, 徐君怡, 等. 食品加工对过敏原活性的影响[J]. 食品安全质量检测学报,2012,3(4):259−263. [Xu Jing, Li Yichen, Xu Junyi, et al. The effect of food processing on allergen activity[J]. Journal of Food Safety and Quality Inspection,2012,3(4):259−263.
    [11]
    Keshavarz B, Jiang X, Hsieh Y P, et al. Matrix effect on food allergen detection-A case study of fish parvalbumin[J]. Food Chemistry,2019,274:526−534. doi: 10.1016/j.foodchem.2018.08.138
    [12]
    Liu G M, Cheng H, Nesbit J B, et al. Effects of boiling on the IgE-Binding properties of tropomyosin of shrimp (Litopenaeus vannamei)[J]. Journal of Food Science,2010,75(1):T1−T5. doi: 10.1111/j.1750-3841.2009.01391.x
    [13]
    Khan M U, Ahmed I, Lin H, et al. Potential efficacy of processing technologies for mitigating crustacean allergenicity[J]. Critical Reviews in Food Science and Nutrition,2019,59(17):2807−2830. doi: 10.1080/10408398.2018.1471658
    [14]
    Liu Y, Li Z, Pavase T, et al. Evaluation of electron beam irradiation to reduce the IgE binding capacity of frozen shrimp tropomyosin[J]. Food and Agricultural Immunology,2016,28(2):189−201.
    [15]
    郭颖希, 王满生, 成军虎, 等. 非热加工技术消减食物过敏原研究进展[J]. 食品与机械,2019,35(5):219−223,230. [Guo Yingxi, Wang Mansheng, Cheng Junhu, et al. Research progress of non-thermal processing technology to reduce food allergens[J]. Food and Machinery,2019,35(5):219−223,230.
    [16]
    Muanghorn W, Konsue N, Sham H, et al. Effects of gamma irradiation on tropomyosin allergen, proximate composition and mineral elements in giant freshwater prawn (Macrobrachium rosenbergii)[J]. Journal of Food Science and Technology,2018,55(5):1960−1965. doi: 10.1007/s13197-018-3104-3
    [17]
    王炳奎, 吴庆, 熊立东. 食品辐照对食品品质的影响及其安全性[J]. 食品科技,2010,35(4):307−309. [Wang Bingkui, Wu Qing, Xiong Lidong. The effect of food irradiation on food quality and its safety[J]. Food Science and Technology,2010,35(4):307−309.
    [18]
    Chung S Y, Yang W, Krishnamurthy K. Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter[J]. Journal of Food Science,2008,73(5):C400−C404. doi: 10.1111/j.1750-3841.2008.00784.x
    [19]
    Shriver S, Yang W D, Chung S Y, et al. Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract[J]. International Journal of Environmental Research and Public Health,2011,8(7):2569−2583. doi: 10.3390/ijerph8072569
    [20]
    Yang W W, Shriver S K, Chung S Y, et al. In vitro gastric and intestinal digestions of pulsed light-treated shrimp extracts[J]. Applied Biochemistry and Biotechnology,2012,166(6):1409−1422. doi: 10.1007/s12010-011-9534-2
    [21]
    Thomas K, Herouet-Guicheney C, Ladics G, et al. Evaluating the effect of food processing on the potential human allergenicity of novel proteins: International workshop report[J]. Food and Chemical Toxicology,2007,45(7):1116−1122. doi: 10.1016/j.fct.2006.12.016
    [22]
    Dasan B G, Boyaci I H. Effect of cold atmospheric plasma on inactivation of escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar[J]. Food and Bioprocess Technology,2018,11(2):334−343. doi: 10.1007/s11947-017-2014-0
    [23]
    Ekezie F G C, Cheng J H, Sun D W. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances[J]. Trends in Food Science & Technology,2018,74:12−25.
    [24]
    Paniwnyk L. Applications of ultrasound in processing of liquid foods: A review[J]. Ultrason Sonochem,2017,38:794−806. doi: 10.1016/j.ultsonch.2016.12.025
    [25]
    Zhenxing L, Caolimin L, Jamil K. Reduction of allergenic properties of shrimp (Penaeus vannamei) allergens by high intensity ultrasound[J]. European Food Research and Technology,2006,223(5):639−644. doi: 10.1007/s00217-005-0246-0
    [26]
    Zhang Z, Zhang X, Chen W, et al. Conformation stability, in vitro digestibility and allergenicity of tropomyosin from shrimp (Exopalaemon modestus) as affected by high intensity ultrasound[J]. Food Chemistry,2018,245:997−1009. doi: 10.1016/j.foodchem.2017.11.072
    [27]
    Yongyan G, Qinzai C, Guiping G, et al. Studies on the reduction of the major allergen tropomyosin in Pacific white shrimp[J]. Journal of Food Science and Biotechnology,2015,34(4):413−419.
    [28]
    刘妍妘, 曹敏杰, 李玉宝, 等. 不同加工方式降低大黄鱼鱼卵过敏原及其消化产物免疫反应性的比较研究[J]. 食品安全质量检测学报,2014,5(4):1045−1053. [Liu Yanyu, Cao Minjie, Li Yubao, et al. Comparison of different processing methods to reduce the immunoreactivity of large yellow croaker roe allergens and their digestive products[J]. Journal of Food Safety and Quality Inspection,2014,5(4):1045−1053.
    [29]
    Long F, Yang X, Sun J, et al. Effects of combined high pressure and thermal treatment on the allergenic potential of peanut in a mouse model of allergy[J]. Innovative Food Science & Emerging Technologies,2016,35:133−138.
    [30]
    董晓颖, 高美须, 潘家荣, 等. 不同处理方法对虾过敏蛋白分子量及抗原性的影响[J]. 核农学报,2010,24(3):548−554. [Dong Xiaoying, Gao Meixu, Pan Jiarong, et al. Effects of different treatment methods on the molecular weight and antigenicity of shrimp allergic protein[J]. Journal of Nuclear Agriculture,2010,24(3):548−554. doi: 10.11869/hnxb.2010.03.0548
    [31]
    王丽娟, 胡志和, 王星璇, 等. 基于高压结合酶法制备的低敏虾制品体内体外致敏性检测的差异性分析[J]. 食品科学,2019,40(20):299−304. [Wang Lijuan, Hu Zhihe, Wang Xingxuan, et al. The difference analysis ofin vitro and in vitro sensitization detection of hypoallergenic shrimp products prepared by high pressure combined with enzymatic method[J]. Food Science,2019,40(20):299−304. doi: 10.7506/spkx1002-6630-20180817-178
    [32]
    Teodorowicz M, van Neerven J, Savelkoul H. Food processing: The influence of the maillard reaction on immunogenicity and allergenicity of food proteins[J]. Nutrients,2017,9(8).
    [33]
    Han X Y, Yang H, Rao S T, et al. The maillard reaction reduced the sensitization of tropomyosin and arginine kinase from scylla paramamosain, simultaneously[J]. Journal of Agricultural And Food Chemistry,2018,66(11):2934−2943. doi: 10.1021/acs.jafc.7b05195
    [34]
    Zhao Y J, Cai Q F, Jin T C, et al. Effect of maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin[J]. Food Science and Technology,2017,75:25−33.
    [35]
    Han J, Chen Y, Ge Y. Research progress of shrimp major allergens and allergenic elimination technology[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(7):201−208.
    [36]
    张轶群, 李振兴, 林洪, 等. 果糖和木糖在美拉德反应中对虾类过敏原活性影响的研究[J]. 食品科学,2009,30(9):11−14. [Zhang Yiqun, Li Zhenxing, Lin Hong, et al. Study on the effect of fructose and xylose on shrimp allergen activity in Maillard reaction[J]. Food Science,2009,30(9):11−14. doi: 10.3321/j.issn:1002-6630.2009.09.001
    [37]
    Zhang Z, Xiao H, Zhang X, et al. Conformation, allergenicity and human cell allergy sensitization of tropomyosin from exopalaemon modestus: Effects of deglycosylation and maillard reaction[J]. Food Chemistry,2019,276:520−527. doi: 10.1016/j.foodchem.2018.10.032
    [38]
    Gupta R K, Gupta K, Sharma A, et al. Maillard reaction in food allergy: Pros and cons[J]. Critical Reviews in Food Science and Nutrition,2018,58(2):208−226. doi: 10.1080/10408398.2016.1152949
    [39]
    Zhang Y, He S, Simpson B K. Enzymes in food bioprocessing-novel food enzymes, applications, and related techniques[J]. Current Opinion in Food Science,2018,19:30−35. doi: 10.1016/j.cofs.2017.12.007
    [40]
    Lasekan A O. Attenuating the antibody reactivity of the shrimp major allergen (tropomyosin) using food processing methods[J]. Dissertation Abstracts International, B, 2017, 79−06(10820729), 198pp.
    [41]
    Cabanillas B, Pedrosa M M, Rodríguez J, et al. Effects of enzymatic hydrolysis on lentil allergenicity[J]. Molecular Nutrition & Food Research,2010,54(9):1266−1272.
    [42]
    王梦梦. 抑菌保鲜和加工方式对虾类主要过敏原原肌球蛋白免疫活性的影响[D]. 上海: 上海海洋大学, 2019

    Wang Mengmeng. The effect of antibacterial preservation and processing methods on the immune activity of the main allergen of shrimp, myosin[D]. Shanghai: Shanghai Ocean University, 2019.
    [43]
    Zhu Y, Gao L, Xie G, et al. Effect of fermentation on immunological properties of allergens from black carp (Mylopharyngodon piceus) sausages[J]. International Journal of Food Science & Technology,2020,55(9):3162−3172.
    [44]
    Qing G, Zhenxing L, Nasha M, et al. Effect of fermentation on IgE binding ability of sea bass (Lateolabrax japonicus) parvalbumin[J]. Food Science, China,2017,38(22):88−94.
    [45]
    史晓磊. 基因工程在降低植物性食品致敏性中应用[J]. 粮食与油脂,2009(9):4−6. [Shi Xiaolei. Application of genetic engineering in reducing the allergenicity of plant foods[J]. Food and Oils,2009(9):4−6. doi: 10.3969/j.issn.1008-9578.2009.09.002
    [46]
    Wai C Y Y, Leung N Y H, Ho M H K, et al. Immunization with Hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity[J]. PloS One,2014,9(11):e111649. doi: 10.1371/journal.pone.0111649
    [47]
    梅雪娇. 基因定点突变和适配体小肽对拟穴青蟹主要过敏原的影响[D]. 厦门: 集美大学, 2019

    Mei Xuejiao. The effect of gene-directed mutations and small aptamer peptides on the main allergens of mud crabs[D]. Xiamen: Jimei University, 2019.
    [48]
    李振兴, 高卿, 米娜莎, 等. 一种利用微生物降低鱼类过敏原活性的方法, CN106722382A [P/OL]. 2017-05-31

    Li Zhenxing, Gao Qing, Minasa, et al. A method of reducing the activity of fish allergens by using microorganisms[P/OL]. Shandong: CN106722382A, 2017-05-31.
    [49]
    刘光明, 费丹霞, 曹敏杰, 等. 一种低过敏性蟹肉松的加工方法, CN105285781A [P]. 2016-02-03

    Liu Guangming, Fei Danxia, Cao Minjie, et al. A processing method of hypoallergenic crabmeat floss[P]. Fujian: CN105285781A, 2016-02-03.
    [50]
    赵丹丹, 陈文烜. 一种低致敏性蟹肉的制备方法, CN109363107A [P]. 2019-02-22

    Zhao Dandan, Chen Wenxuan. A preparation method of hypoallergenic crabmeat[P]. CN109363107A, 2019-02-22.
    [51]
    王雪, 汪何雅, 钱和, 等. 发酵法降低食品过敏性[J]. 食品科技,2011,36(6):302−304. [Wang Xue, Wang Heya, Qian He, et al. Fermentation method reduces food allergies[J]. Food Science and Technology,2011,36(6):302−304.
    [52]
    刘光明, 夏菲, 杨煌, 等. 一种低致敏性虾排汉堡的制备方法, CN109221337A [P]. 2019-01-18

    Liu Guangming, Xia Fei, Yang Huang, et al. A preparation method of hypoallergenic shrimp steak burger[P/OL]. Fujian: CN109221337A, 2019-01-18.
  • Cited by

    Periodical cited type(4)

    1. 柳富杰,黄释慧,潘莉莉. 纳米碳酸钙表面改性沸石对模拟蔗汁中酚酸的吸附性能. 食品与机械. 2024(01): 33-39 .
    2. 玉澜,时倩倩,文胜,陈燕萌,兰兴先,蒋才云. 白云石/三聚氰胺复合材料制备及吸附结晶紫性能研究. 化学研究与应用. 2024(08): 1718-1724 .
    3. 陈燕萌,陈广成,蒋才云. 沃柑皮基活性炭的制备及其对结晶紫的吸附研究. 化学研究与应用. 2023(06): 1387-1395 .
    4. 王未君,杨博,李文林,马旋,刘昌盛. 不同种类二氧化硅的表征及其在浓香菜籽油低温吸附精炼中的应用. 食品科学. 2023(16): 1-7 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return